当前位置: X-MOL 学术Plasma Res. Express › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mapping the electric field vector of guided ionization waves at atmospheric pressure
Plasma Research Express Pub Date : 2020-06-22 , DOI: 10.1088/2516-1067/ab9b69
S Iseni

In this study, the dynamic of guided ionization wave (IW) generated by an atmospheric pressure plasma jet (APPJ) device operating in helium is experimentally investigated. The present work focuses on the properties of the intense electric field (EF) driving the IW. Taking advantages of APPJs to produce guided and reproducible IWs, the induced EF vector is characterized spatially and temporally along the direction of propagation. With this approach, EF vector mapping of guided IWs have been measured and documented for the first time. In the first part, the propagation within a glass tube of the first IW is investigated. Under the present conditions, a second guided IW is observed and propagates, leading to the formation of a guided streamer. The EF due to transient charge deposited on the wall surface is observed, particularly at the end of the tube. In the second part, one reports on the EF vector mapping under a dielectric substrate in contact with guided IWs. EF strength up to $55\,\mathrm{kV}\,{\mathrm{cm}}^{-1}$ has been measured and corroborates prior results from predictive numerical simulations. Intriguing configurations of the EF lines will be of significant interest to validate theoretical models in order to refine the non-equilibrium plasma chemistry kinetics. Furthermore, this preliminary work provides important insights into various applications involving IW driven discharges such as liquid activation, environmental treatments, plasma medicine, active flow control and plasma agriculture.



中文翻译:

绘制大气压下引导电离波的电场矢量

在这项研究中,通过大气压等离子体射流产生引导电离波的(IW)的动态在氦(APPJ)器件的工作是通过实验研究。目前的工作重点是驱动 IW 的强电场 (EF) 的特性。利用 APPJ 产生引导和可重复的IW,诱导 EF 矢量沿传播方向在空间和时间上进行表征。使用这种方法,首次测量和记录了引导 IW 的 EF 矢量映射。在第一部分中,研究了第一个 IW 在玻璃管内的传播。在目前条件下,第二个引导 IW 被观察到并传播,导致引导拖缆的形成。观察到由于沉积在壁表面上的瞬态电荷而导致的 EF,特别是在管的末端。在第二部分中,报告了与引导 IW接触的介电基板下的 EF 矢量映射。EF 强度可达$55\,\mathrm{kV}\,{\mathrm{cm}}^{-1}$已经测量并证实了预测性数值模拟的先前结果。EF 线的有趣配置对于验证理论模型以改进非平衡等离子体化学动力学具有重要意义。此外,这项初步工作为涉及 IW 驱动放电的各种应用提供了重要见解,例如液体活化、环境处理、等离子体医学、主动流动控制和等离子体农业。

更新日期:2020-06-22
down
wechat
bug