当前位置: X-MOL 学术J. Phys. Condens. Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Non-hydrostatic pressure-dependent structural and transport properties of BiCuSeO and BiCuSO single crystals
Journal of Physics: Condensed Matter ( IF 2.7 ) Pub Date : 2020-12-23 , DOI: 10.1088/1361-648x/abd11a
Yang-Yang Lv 1, 2 , Yonghui Zhou 3 , Lu Xu 1, 4 , Yecheng Luo 1, 2 , Yan-Yan Zhang 1, 4 , Lin Cao 1, 4 , Jian Zhou 1, 4 , Y B Chen 1, 2 , Shu-Hua Yao 1, 4 , Shan-Tao Zhang 1, 4 , Zhaorong Yang 3, 5, 6 , Yan-Feng Chen 1, 4, 5
Affiliation  

High-pressure experiments usually expect a hydrostatic condition, in which the physical properties of materials can be easily understood by theoretical simulations. Unfortunately, non-hydrostatic effect is inevitable in experiments due to the solidification of the pressure transmitting media under high pressure. Resultantly, non-hydrostaticity affects the accuracy of the experimental data and sometimes even leads to false phenomena. Since the non-hydrostatic effect is extrinsic, it is quite hard to analyze quantitatively. Here, we have conducted high pressure experiments on the layered BiCuXO (X=S and Se) single crystals and quantitatively analyzed their pronounced non-hydrostatic effect by high throughput first-principles calculations and experimental Raman spectra. Our experiments find that the BiCuXO single crystals sustain the tetragonal structure up to 55 GPa (maximum pressure in our experiment). However, their pressure-dependent Raman shift and electric resistance show anomalous behaviors. Through optimization of thousands of crystal structures in the high throughput first-principles calculations, we have obtained the evolution of the lattice constants under external pressures, which clearly substantiates the non-hydrostatical pressure exerted in BiCuXO crystals. Our work indicates that the high throughput first-principles calculations could be a handy method to investigate the non-hydrostatic effect on the structural and electronic properties of materials in high pressure experiments.

中文翻译:

BiCuSeO 和 BiCuSO 单晶的非静水压力依赖性结构和传输特性

高压实验通常期望流体静力学条件,其中材料的物理特性可以通过理论模拟轻松理解。不幸的是,由于压力传输介质在高压下的凝固,非流体静力效应在实验中是不可避免的。结果,非流体静力学影响实验数据的准确性,有时甚至导致错误现象。由于非流体静力效应是外在的,因此很难定量分析。在这里,我们对层状 BiCuXO(X=S 和 Se)单晶进行了高压实验,并通过高通量第一性原理计算和实验拉曼光谱定量分析了它们明显的非流体静力效应。我们的实验发现,BiCuXO 单晶可维持高达 55 GPa(我们实验中的最大压力)的四方结构。然而,它们与压力相关的拉曼位移和电阻表现出异常行为。通过在高通量第一性原理计算中优化数千个晶体结构,我们获得了外压下晶格常数的演变,这清楚地证实了施加在 BiCuXO 晶体中的非静水压力。我们的工作表明,高通量第一性原理计算可能是研究高压实验中非流体静力对材料结构和电子特性的影响的便捷方法。它们与压力相关的拉曼位移和电阻表现出异常行为。通过在高通量第一性原理计算中优化数千个晶体结构,我们获得了外压下晶格常数的演变,这清楚地证实了施加在 BiCuXO 晶体中的非静水压力。我们的工作表明,高通量第一性原理计算可能是研究高压实验中非流体静力对材料结构和电子特性的影响的便捷方法。它们与压力相关的拉曼位移和电阻表现出异常行为。通过在高通量第一性原理计算中优化数千个晶体结构,我们获得了外压下晶格常数的演变,这清楚地证实了施加在 BiCuXO 晶体中的非静水压力。我们的工作表明,高通量第一性原理计算可能是研究高压实验中非流体静力对材料结构和电子特性的影响的便捷方法。这清楚地证实了施加在 BiCuXO 晶体中的非静水压力。我们的工作表明,高通量第一性原理计算可能是研究高压实验中非流体静力对材料结构和电子特性的影响的便捷方法。这清楚地证实了施加在 BiCuXO 晶体中的非静水压力。我们的工作表明,高通量第一性原理计算可能是研究高压实验中非流体静力对材料结构和电子特性的影响的便捷方法。
更新日期:2020-12-23
down
wechat
bug