当前位置: X-MOL 学术FEMS Microbiol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms
FEMS Microbiology Reviews ( IF 11.3 ) Pub Date : 2021-02-17 , DOI: 10.1093/femsre/fuab008
Barbara Bourgade 1 , Nigel P Minton 2 , M Ahsanul Islam 1
Affiliation  

Unabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.

中文翻译:

C1-气体发酵产乙酸底盘生物的遗传和代谢工程挑战

石油和石油资源的不断开采和利用以及将其转化为基本燃料和化学品会对环境造成严重后果,导致全球变暖和气候变化。此外,化石燃料是有限资源,很快就会出现短缺。因此,研究工作越来越集中于开发化学品和燃料生产的可持续替代品。在这种背景下,依赖微生物的生物过程引起了特别的兴趣。例如,产乙酸菌利用 Wood-Ljungdahl 途径以单碳 C1 气体(CO 2和 CO)作为其唯一碳源生长,并产生有价值的产品,例如乙酸盐或乙醇。因此,这些自养生物可用于大规模发酵过程,从丰富的温室气体中生产工业相关的化学品。此外,最近开发了遗传工具,通过合成生物学方法来改善这些底盘生物。本综述将重点关注基因和代谢修饰产乙酸剂所面临的挑战。它将首先讨论使这些生物体中的成功 DNA 转移复杂化的物理和生化障碍。然后将描述当前为几种产乙酸菌开发的遗传工具,这对于菌株工程巩固和扩展其产品目录至关重要。最后将讨论最近用于代谢工程目的的工具应用,以允许代谢通量的重定向或非天然化合物的生产。
更新日期:2021-03-18
down
wechat
bug