当前位置: X-MOL 学术J. Sandw. Struct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-plane dynamic crushing behaviors of joint-based hierarchical honeycombs with different topologies
Journal of Sandwich Structures & Materials ( IF 3.5 ) Pub Date : 2021-02-15 , DOI: 10.1177/1099636221994140
Xin-chun Zhang 1 , Zhen-feng Shen 1 , He-xiang Wu 2 , Jiang-pan Bai 1
Affiliation  

Introducing the hierarchy into cellular materials has attracted increasing attention in the effort to pursue improved absorbed-energy abilities and impact resistance. In this paper, the dynamic crushing properties and energy absorption capacities of joint-based hierarchical honeycombs with different topologies were explored by means of explicit dynamic finite element (FE) analysis using ANSYS/LS-DYNA. Four types of joint-based hierarchical honeycombs with uniform cell-wall thickness were firstly constructed by substituting each vertex of regular honeycombs with a smaller self-similar cell (hexagon or square). The respective influences of hierarchical parameters and impact velocities on in-plane dynamic deformation modes, mechanical characteristic and energy absorption of joint-based hierarchical honeycombs were discussed. Research results showed that the hierarchy had a far greater influence on the in-plane deformation modes of honeycombs. Compared with regular honeycombs, the dynamic plateau stress and specific energy absorption of joint-based hierarchical honeycombs can be improved if the proper hierarchical parameters were chosen. Adding the joint-based hierarchy into regular honeycombs can enhance the crushing stress efficiency (CSE) of the specimens. In addition, by introducing a non-dimensional dynamic sensitivity index, the dynamic shock enhancement of hierarchical honeycombs was also investigated. These researches are useful for the multi-objective dynamic optimization design and controllable properties of cellular materials.



中文翻译:

具有不同拓扑的基于关节的分层蜂窝的面内动态破碎行为

在寻求改进的吸收能能力和抗冲击性的努力中,将层次结构引入细胞材料已引起越来越多的关注。本文通过使用ANSYS / LS-DYNA进行显式动态有限元(FE)分析,探索了具有不同拓扑结构的基于接头的分层蜂窝的动态破碎特性和能量吸收能力。首先用规则的蜂窝的每个顶点替换为较小的自相似蜂窝(六边形或正方形),构造出四种具有均匀孔壁厚度的基于关节的分层蜂窝。讨论了分层参数和冲击速度对基于节理的分层蜂窝的面内动态变形模式,力学特性和能量吸收的各自影响。研究结果表明,层次结构对蜂窝的面内变形模式影响更大。与常规蜂窝相比,如果选择适当的分层参数,则可以改善基于关节的分层蜂窝的动态平台应力和比能吸收。将基于关节的层次结构添加到常规蜂窝中可以提高样本的破碎应力效率(CSE)。另外,通过引入无量纲的动态灵敏度指标,还研究了分级蜂窝的动态冲击增强。这些研究对于多孔材料的多目标动态优化设计和可控性是有用的。如果选择适当的分层参数,则可以改善基于接头的分层蜂窝的动态平台应力和比能吸收。将基于关节的层次结构添加到常规蜂窝中可以提高样本的破碎应力效率(CSE)。另外,通过引入无量纲的动态灵敏度指标,还研究了分级蜂窝的动态冲击增强。这些研究对于多孔材料的多目标动态优化设计和可控性是有用的。如果选择适当的分层参数,则可以改善基于关节的分层蜂窝的动态平台应力和比能吸收。将基于关节的层次结构添加到常规蜂窝中可以提高样本的破碎应力效率(CSE)。另外,通过引入无量纲的动态灵敏度指标,还研究了分级蜂窝的动态冲击增强。这些研究对于多孔材料的多目标动态优化设计和可控性是有用的。另外,通过引入无量纲的动态灵敏度指标,还研究了分级蜂窝的动态冲击增强。这些研究对于多孔材料的多目标动态优化设计和可控性是有用的。另外,通过引入无量纲的动态灵敏度指标,还研究了分级蜂窝的动态冲击增强。这些研究对于多孔材料的多目标动态优化设计和可控性是有用的。

更新日期:2021-02-16
down
wechat
bug