当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation of heat transfer and flow characteristics of a double-wall cooling structure: Reverse circular jet impingement
Applied Thermal Engineering ( IF 6.1 ) Pub Date : 2021-02-16 , DOI: 10.1016/j.applthermaleng.2021.116720
Abdallah Ahmed , Edward Wright , Fawzy Abdel-Aziz , Yuying Yan

Double-wall cooling structures are commonly used to enhance the heat transfer in combustor liner and aerofoil internal cooling within gas turbine engines and other industrial applications. This is the first study to adopt a novel reverse jet impingement technique into a double-wall cooling structure in order to achieve a higher heat transfer rate with relatively lower pressure drop. This paper uses the computational fluid dynamics to study crossflow, nozzle configuration, inlet orientation, and jet-to-target spacing distance effects on the heat transfer rate and the discharge coefficient. In this study, jet-to-target spacing was varied from 1.6 to 7 jet diameter, jet-to-jet spacing was 3.4 jet diameter, the reverse tube diameter was 3.2 jet diameter, and jet Reynolds number was set at 23,000. Procedural optimisation throughout the study initially evaluated that nozzles extended through the crossflow channel are more effective than the square-edged nozzles in eliminating the crossflow effect and promoting higher heat transfer. Variation of inlet condition yielded no significant optimisation was found. Jet-to-target spacing was optimised at jet-to-target spacing around 3 jet diameter. The most significant variable affecting nozzle discharge coefficient was the flow area of the outlet. The reverse jet impingement design showed capacity to enhance heat transfer by increasing the internal surface area, and minimise negative crossflow effects, without excessive reduction in the discharge coefficient.



中文翻译:

双层冷却结构传热和流动特性的数值研究:反向圆形射流冲击

双壁冷却结构通常用于增强燃烧器衬套中的传热以及燃气涡轮发动机和其他工业应用中的机翼内部冷却。这是首次在双层冷却结构中采用新型反向射流冲击技术的研究,目的是在相对较低的压降下实现更高的传热速率。本文使用计算流体动力学来研究错流,喷嘴配置,入口方向以及射流到目标的间距对传热速率和排放系数的影响。在这项研究中,喷射到目标的间距从1.6到7喷射直径变化,喷射到喷射的间距为3.4喷射直径,反向管直径为3.2喷射直径,喷射雷诺数设定为23,000。整个研究过程中的过程优化最初评估为,延伸穿过错流通道的喷嘴在消除错流效果和促进更高的热传递方面比方形边缘的喷嘴更有效。进气条件的变化未发现明显的优化。射流与目标的间距在射流与目标的间距约为3个射流直径时进行了优化。影响喷嘴排放系数的最重要变量是出口的流通面积。反向射流冲击设计显示了通过增加内表面积来增强热传递的能力,并最大程度地减小了负面的横流效应,而不会过度降低排放系数。

更新日期:2021-02-19
down
wechat
bug