当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep moiré potentials in twisted transition metal dichalcogenide bilayers
Nature Physics ( IF 19.6 ) Pub Date : 2021-02-15 , DOI: 10.1038/s41567-021-01174-7
Sara Shabani , Dorri Halbertal , Wenjing Wu , Mingxing Chen , Song Liu , James Hone , Wang Yao , D. N. Basov , Xiaoyang Zhu , Abhay N. Pasupathy

In twisted bilayers of semiconducting transition metal dichalcogenides, a combination of structural rippling and electronic coupling gives rise to periodic moiré potentials that can confine charged and neutral excitations1,2,3,4,5. Here we show that the moiré potential in these bilayers at small angles is unexpectedly large, reaching values above 300 meV for the valence band and 150 meV for the conduction band—an order of magnitude larger than theoretical estimates based on interlayer coupling alone. We further demonstrate that the moiré potential is a non-monotonic function of moiré wavelength, reaching a maximum at a moiré period of ~13 nm . This non-monotonicity coincides with a change in the structure of the moiré pattern from a continuous variation of stacking order at small moiré wavelengths to a one-dimensional soliton-dominated structure at large moiré wavelengths. We show that the in-plane structure of the moiré pattern is captured by a continuous mechanical relaxation model, and find that the moiré structure and internal strain, rather than the interlayer coupling, are the dominant factors in determining the moiré potential. Our results demonstrate the potential of using precision moiré structures to create deeply trapped carriers or excitations for quantum electronics and opto-electronics.



中文翻译:

扭曲的过渡金属二硫属化物双层中的深莫尔电位

在半导体过渡金属二硫化物的扭曲双层中,结构波纹和电子耦合的组合会产生周期性的莫尔电位,可以限制带电和中性激发1,2,3,4,5. 在这里,我们表明这些双层中小角度的莫尔电位出乎意料地大,价带达到 300 meV 以上,导带达到 150 meV 以上——比仅基于层间耦合的理论估计值大一个数量级。我们进一步证明莫尔电位是莫尔波长的非单调函数,在~13 nm 的莫尔周期达到最大值。这种非单调性与莫尔图案结构的变化相吻合,从小莫尔波长处堆叠顺序的连续变化到大莫尔波长处的一维孤子主导结构。我们表明,莫尔图案的面内结构是由连续机械松弛模型捕获的,并发现莫尔结构和内部应变,而不是层间耦合,是决定莫尔电位的主要因素。我们的结果证明了使用精密莫尔结构为量子电子学和光电子学创建深度捕获的载流子或激发的潜力。

更新日期:2021-02-15
down
wechat
bug