当前位置: X-MOL 学术Geochemistry, Geophys. Geosystems › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Do Olivine Crystallization Temperatures Faithfully Record Mantle Temperature Variability?
Geochemistry, Geophysics, Geosystems ( IF 2.9 ) Pub Date : 2021-02-14 , DOI: 10.1029/2020gc009157
Simon Matthews 1, 2 , Kevin Wong 1, 3 , Oliver Shorttle 1, 4 , Marie Edmonds 1 , John Maclennan 1
Affiliation  

Crystallization temperatures of primitive olivine crystals have been widely used as both a proxy for, or an intermediate step in calculating, mantle temperatures. The olivine‐spinel aluminum‐exchange thermometer has been applied to samples from mid‐ocean ridges and large igneous provinces, yielding considerable variability in olivine crystallization temperatures. We supplement the existing data with new crystallization temperature estimates for Hawaii, between 1282 ± 21 and 1375 ± 19°C. Magmatic temperatures may be linked to mantle temperatures if the thermal changes during melting can be quantified. The magnitude of this temperature change depends on melt fraction, itself controlled by mantle temperature, mantle composition and lithosphere thickness. Both mantle composition and lithosphere thickness vary spatially and temporally, with systematic differences between mid‐ocean ridges, ocean islands and large igneous provinces. For crystallization temperatures to provide robust evidence of mantle temperature variability, the controls of lithosphere thickness and mantle lithology on crystallization temperature must be isolated. We develop a multi‐lithology melting model for predicting crystallization temperatures of magmas in both intra‐plate volcanic provinces and mid‐ocean ridges. We find that the high crystallization temperatures seen at mantle plume localities do require high mantle temperatures. In the absence of further constraints on mantle lithology or melt productivity, we cannot robustly infer variable plume temperatures between ocean‐islands and large igneous provinces from crystallization temperatures alone; for example, the extremely high crystallization temperatures obtained for the Tortugal Phanerozoic komatiite could derive from mantle of comparable temperature to modern‐day Hawaii. This work demonstrates the limit of petrological thermometers when other geodynamic parameters are poorly known.

中文翻译:

橄榄石结晶温度能可靠地记录地幔温度变化吗?

原始橄榄石晶体的结晶温度已被广泛用作地幔温度的替代或中间步骤。橄榄石-尖晶石型铝交换温度计已应用于来自洋中脊和火成岩大省的样品,橄榄石结晶温度存在很大差异。我们用夏威夷的新结晶温度估算值补充现有数据,介于1282±21和1375±19°C之间。如果可以量化融化过程中的热变化,则岩浆温度可能与地幔温度有关。温度变化的幅度取决于熔体分数,而熔体分数本身受地幔温度,地幔成分和岩石圈厚度的控制。地幔组成和岩石圈厚度都在空间和时间上变化,大洋中脊,海洋岛屿和火成岩大省之间存在系统性差异。为了使结晶温度提供可靠的地幔温度变化证据,必须隔离岩石圈厚度和地幔岩性对结晶温度的控制。我们开发了一种多岩性熔融模型,以预测板内火山省和中海洋脊的岩浆结晶温度。我们发现,在地幔羽流区域看到的高结晶温度确实需要很高的地幔温度。在没有进一步限制地幔岩性或熔体生产率的情况下,我们不能仅靠结晶温度就无法可靠地推断出大洋岛屿与火成岩大省之间的羽状温度变化。例如,Tortugal Phanerozoic komatiite获得的极高结晶温度可能来自与现代夏威夷相当的地幔。当其他地球动力学参数鲜为人知时,这项工作证明了岩石温度计的局限性。
更新日期:2021-04-23
down
wechat
bug