当前位置: X-MOL 学术Soil Dyn. Earthq. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic response of asphalt pavement under vibration rolling load: Theory and calibration
Soil Dynamics and Earthquake Engineering ( IF 4.2 ) Pub Date : 2021-02-13 , DOI: 10.1016/j.soildyn.2021.106633
Shi-Ping Wang , Han-Cheng Dan , Liang Li , Xiang Liu , Zhi Zhang

Vibrating compaction is a critical procedure to guarantee the quality of asphalt pavement, and the dynamic response of asphalt pavement is a complicate problem in the process of vibration rolling. This paper aims to theoretically investigate the dynamic response regulation and influencing factors of pavement under the moving vibration load. Firstly, based on the viscoelastic theory of multi-layer system, the dynamic response governing equation of asphalt pavement is established under the vibration load, the governing equation was then simplified by the two-dimensional Fourier transform method. Further, the stiffness matrices of the single-layer and multi-layer pavement structures are obtained by using the dynamic stiffness method. Consequently, the exact solution is obtained for the plane strain problem by programming and validated with the finite element results, which is proved to be more efficient in the calculation. Moreover, the model is calibrated by the field test to determine the wave number and dynamic modulus during the vibration rolling process. Subsequently, the effects of material and load frequency are investigated on the dynamic response in terms of acceleration and displacement. The results show that both of the acceleration and displacement of pavement surface vibrate periodically with the vibrating load, and the changing regulations of the acceleration and displacement with loading time can be divided into three stages corresponding to the engineering practice such as rapid decline, slow decline and stable stages. Finally, the influencing factors are analyzed in terms of the modulus of materials (i.e., surface course and base course) and the frequency of load. It shows that the peak values of acceleration and displacement of the pavement surface change significantly and nonlinearly with the material modulus in the form of power function. Meanwhile, the influence of vibrating frequency is also significant and a quadratic relationship between the acceleration/displacement and frequency. This paper provides an insight into understanding the dynamic response of pavement under vibration rolling condition to some extent, and potentially provides theoretical and technical support for accurately determining and modifying some indexes that characterize the compaction degree of asphalt pavement.



中文翻译:

振动滚动荷载作用下沥青路面的动力响应:理论与校正

振动压实是保证沥青路面质量的关键步骤,而沥青路面的动力响应是振动碾压过程中的一个复杂问题。本文旨在从理论上研究运动振动荷载作用下路面的动力响应规律及其影响因素。首先,基于多层系统的粘弹性理论,建立了振动荷载作用下沥青路面的动力响应控制方程,然后通过二维傅立叶变换法简化了控制方程。此外,通过使用动态刚度方法获得单层和多层路面结构的刚度矩阵。所以,通过编程获得了平面应变问题的精确解,并通过有限元结果进行了验证,这被证明在计算中更为有效。此外,通过现场测试对模型进行校准,以确定振动轧制过程中的波数和动态模量。随后,研究了材料和载荷频率对加速度和位移方面的动力响应的影响。结果表明,路面的加速度和位移随振动载荷的变化而周期性地振动,加速度和位移随加载时间的变化规律可分为三个阶段,分别与工程实践相对应,即快速下降,缓慢下降。和稳定的阶段。最后,根据材料的模量(即表面路线和基础路线)和负载频率分析影响因素。结果表明,路面的加速度和位移的峰值随幂函数形式的材料模量而显着且非线性地变化。同时,振动频率的影响也很大,并且加速度/位移与频率之间呈二次关系。本文为在一定程度上了解振动碾压条件下路面的动力响应提供了见识,并为准确确定和修改一些表征沥青路面压实度的指标提供了理论和技术支持。表面路线和基础路线)以及负载频率。结果表明,路面的加速度和位移的峰值随幂函数形式的材料模量而显着且非线性地变化。同时,振动频率的影响也很大,并且加速度/位移与频率之间呈二次关系。本文为在一定程度上了解振动碾压条件下路面的动力响应提供了见识,并为准确确定和修改一些表征沥青路面压实度的指标提供了理论和技术支持。表面路线和基础路线)以及负载频率。结果表明,路面的加速度和位移的峰值随幂函数形式的材料模量而显着且非线性地变化。同时,振动频率的影响也很大,并且加速度/位移与频率之间呈二次关系。本文为在一定程度上了解振动碾压条件下路面的动力响应提供了见识,并为准确确定和修改一些表征沥青路面压实度的指标提供了理论和技术支持。结果表明,路面的加速度和位移的峰值随幂函数形式的材料模量而显着且非线性地变化。同时,振动频率的影响也很大,并且加速度/位移与频率之间呈二次关系。本文为在一定程度上了解振动碾压条件下路面的动力响应提供了见识,并为准确确定和修改一些表征沥青路面压实度的指标提供了理论和技术支持。结果表明,路面的加速度和位移的峰值随幂函数形式的材料模量而显着且非线性地变化。同时,振动频率的影响也很大,并且加速度/位移与频率之间呈二次关系。本文为在一定程度上了解振动碾压条件下路面的动力响应提供了见识,并为准确确定和修改一些表征沥青路面压实度的指标提供了理论和技术支持。

更新日期:2021-02-15
down
wechat
bug