当前位置: X-MOL 学术Pet. Explor. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation-based correction of relative permeability hysteresis in water-invaded underground gas storage during multi-cycle injection and production
Petroleum Exploration and Development ( IF 7.0 ) Pub Date : 2021-02-15 , DOI: 10.1016/s1876-3804(21)60015-0
Sinan ZHU , Junchang SUN , Guoqi WEI , Dewen ZHENG , Jieming WANG , Lei SHI , Xianshan LIU

By conducting relative permeability experiments of multi-cycle gas-water displacement and imbibition on natural cores, we discuss relative permeability hysteresis effect in underground gas storage during multi-cycle injection and production. A correction method for relative permeability hysteresis in numerical simulation of water-invaded gas storage has been worked out using the Carlson and Killough models. A geologic model of water-invaded sandstone gas storage with medium-low permeability is built to investigate the impacts of relative permeability hysteresis on fluid distribution and production performance during multi-cycle injection and production of the gas storage. The study shows that relative permeability hysteresis effect occurs during high-speed injection and production in gas storage converted from water-invaded gas reservoir, and leads to increase of gas-water transition zone width and thickness, shrinkage of the area of high-efficiency gas storage, and decrease of the peak value variation of pore volume containing gas, and then reduces the storage capacity, working gas volume, and high-efficiency operation span of the gas storage. Numerical simulations exhibit large prediction errors of performance indexes if this hysteresis effect is not considered. Killough and Carlson methods can be used to correct the relative permeability hysteresis effect in water-invaded underground gas storage to improve the prediction accuracy. The Killough method has better adaptability to the example model.



中文翻译:

基于数值模拟的多周期注采生产中注水地下储气库相对渗透率滞后校正

通过在天然岩心上进行多循环气-水驱替和吸收的相对渗透率实验,我们讨论了在多循环注入和生产过程中地下储气库中的相对渗透率滞后效应。利用Carlson和Killough模型,研究了水侵入气藏数值模拟中相对渗透率滞后的校正方法。建立了中低渗透率水侵砂岩储气层的地质模型,以研究相对渗透率滞后对储气库多周期注入和生产过程中流体分布和生产性能的影响。研究表明,从注水气藏转换成的储气库在高速注入和生产过程中会发生相对渗透率滞后效应,导致气水过渡带宽度和厚度的增加,高效气藏面积的缩小,含气孔体积峰值变化的减小,进而降低了储气量,工作气量和储气库的高效运行范围。如果不考虑这种滞后效应,数值模拟将表现出较大的性能指标预测误差。Killough和Carlson方法可用于校正水浸地下储气库中的相对渗透率滞后效应,以提高预测精度。Killough方法对示例模型具有更好的适应性。降低了含气孔体积的峰值变化,从而减小了储气库的储气量,工作气量和高效的工作跨度。如果不考虑这种滞后效应,数值模拟将表现出较大的性能指标预测误差。Killough和Carlson方法可用于校正水浸地下储气库中的相对渗透率滞后效应,以提高预测精度。Killough方法对示例模型具有更好的适应性。降低了含气孔体积的峰值变化,从而减小了储气库的储气量,工作气量和高效的工作跨度。如果不考虑这种滞后效应,数值模拟将表现出较大的性能指标预测误差。Killough和Carlson方法可用于校正水浸地下储气库中的相对渗透率滞后效应,以提高预测精度。Killough方法对示例模型具有更好的适应性。Killough和Carlson方法可用于校正水浸地下储气库中的相对渗透率滞后效应,以提高预测精度。Killough方法对示例模型具有更好的适应性。Killough和Carlson方法可用于校正水浸地下储气库中的相对渗透率滞后效应,以提高预测精度。Killough方法对示例模型具有更好的适应性。

更新日期:2021-02-15
down
wechat
bug