当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly selective and stackable electrode design for gaseous CO2 electroreduction to ethylene in a zero-gap configuration
Nano Energy ( IF 16.8 ) Pub Date : 2021-02-15 , DOI: 10.1016/j.nanoen.2021.105859
Woong Hee Lee , Chul Wan Lim , Si Young Lee , Keun Hwa Chae , Chang Hyuck Choi , Ung Lee , Byoung Koun Min , Yun Jeong Hwang , Hyung-Suk Oh

The electrochemical reduction of CO2 to ethylene has the potential to reduce greenhouse gas emissions while producing commodity chemicals for plastics; however, a scalable and feasible system for this remains a challenge. Herein, we report an efficient and stackable electrode design for the electrolysis of CO2 to ethylene. Using KOH-incorporated Cu nanoparticle (Cu-KOH) as the cathode in a zero-gap electrolyzer, Faradaic efficiency of 78.7% for C2 products was achieved at a current density of 281 mA cm–2. Among C2 products, ethylene with a 54.5% FE was dominant product. For mass production, three membrane electrode assemblies (MEAs) were stacked and operated. Operando X-ray absorption spectroscopy under the zero-gap electrolyzer suggested mainly metallic Cu state with some persistent oxide-derived Cu species in Cu-KOH, including Cu2O and Cu(OH)2, which expected a synergistic effect for the conversion of CO2 to C2H4. Our findings provide a new strategy for converting CO2 to C2H4, which is expected to accelerate the commercialization of high-value chemical production through electrochemical CO2 reduction.



中文翻译:

高选择性和可堆叠电极设计,可在零间隙配置下将气态CO 2电还原为乙烯

通过电化学方式将CO 2还原为乙烯,有可能减少温室气体排放,同时生产用于塑料的商品化学品。但是,一个可扩展且可行的系统仍然是一个挑战。在此,我们报道了一种用于将CO 2电解为乙烯的有效且可堆叠的电极设计。在零间隙电解槽中,使用掺有KOH的Cu纳米粒子(Cu-KOH)作为阴极,在281 mA cm –2的电流密度下,C 2产品的法拉第效率达到了78.7%。在C 2产品中,具有54.5%FE的乙烯是主要产品。为了批量生产,将三个膜电极组件(MEA)堆叠并操作。Operando零间隙电解槽下的X射线吸收光谱表明,Cu-KOH中主要为金属Cu态,并存在一些持久性氧化物衍生的Cu物种,包括Cu 2 O和Cu(OH)2,这有望为CO的转化产生协同效应。2至C 2 H 4。我们的发现提供了将CO 2转化为C 2 H 4的新策略,有望通过电化学还原CO 2来加速高价值化学生产的商业化。

更新日期:2021-02-18
down
wechat
bug