当前位置: X-MOL 学术Measurement › 论文详情
Longitudinal tear detection method of conveyor belt based on audio-visual fusion
Measurement ( IF 3.364 ) Pub Date : 2021-02-13 , DOI: 10.1016/j.measurement.2021.109152
Jian Che; Tiezhu Qiao; Yi Yang; Haitao Zhang; Yusong Pang

Conveyor belt tear detection is a very important part of coal mine safety production. In this paper, a new method of detecting conveyor belt damage named audio-visual fusion (AVF) detection method is proposed. The AVF method uses both a visible light CCD and a microphone array to collect images and sounds of the conveyor belt in different running states. By processing and analyzing the collected images and sounds, the image and sound features of normal, tear and scratch can be extracted respectively. Then the extracted features of images and sounds are fused and classified by machine learning algorithm. The results show that the accuracy of AVF method for conveyor belt scratch is 93.66%, and the accuracy of longitudinal tear is higher than 96.23%. Compared with existing methods AVF method overcomes the limitation of visual detection condition, and is more accurate and reliable for conveyor belt tear detection.



中文翻译:

基于视听融合的输送带纵向撕裂检测方法

输送带撕裂检测是煤矿安全生产的重要组成部分。本文提出了一种检测输送带损坏的新方法,称为视听融合(AVF)检测方法。AVF方法同时使用可见光CCD和麦克风阵列来收集处于不同运行状态的传送带的图像和声音。通过处理和分析收集的图像和声音,可以分别提取正常,撕裂和划痕的图像和声音特征。然后通过机器学习算法对提取的图像和声音特征进行融合和分类。结果表明,AVF方法对输送带刮擦的准确度为93.66%,纵向撕裂的准确度高于96.23%。与现有方法相比,AVF方法克服了视觉检测条件的局限性,

更新日期:2021-02-21
全部期刊列表>>
牛年开工季
JCR Q1医学全学科
新春生命科学
新春医学
空气污染与健康
虚拟特刊
亚洲大洋洲地球科学
NPJ欢迎投稿
自然科研论文编辑
ERIS期刊投稿
欢迎阅读创刊号
自然职场,为您触达千万科研人才
spring&清华大学出版社
城市可持续发展前沿研究专辑
Springer 纳米技术权威期刊征稿
全球视野覆盖
施普林格·自然新
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
上海中医药大学
南科大-连续三周2.26
西湖大学
化学所
北京大学
厦门大学
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
清华
南方科技大学
中国石油大学
天合科研
x-mol收录
试剂库存
down
wechat
bug