当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Marangoni convection instability in an evaporating droplet deposited on volatile liquid layer
International Journal of Heat and Mass Transfer ( IF 5.0 ) Pub Date : 2021-02-15 , DOI: 10.1016/j.ijheatmasstransfer.2021.121055
Tian-Shi Wang , Wan-Yuan Shi

The Marangoni convection patterns in an evaporating droplet deposited on volatile liquid layer were experimentally investigated in this work. Two types of Marangoni instabilities were observed on the surface of the methanol droplet under two different equilibrium state. The hydrothermal waves which travel along azimuthal direction with a source and a sink appear in the liquid lens fully floating on liquid layer. With evaporation, the wave number decreases and follows a power law with the dimensionless radius of lens and the temperature difference between the substrate and the ambient. For droplet partially floating on thin liquid layer, the surface pattern is arranged in an n-fold structure with serval cold bands linking the droplet apex with the contact line during the early period of evaporation. After that, the Bénard-Marangoni convection cells occur near the contact line and they move inwards along radial direction, whose dynamic behavior is entirely opposite to that of the droplet on solid surface. Several gaps appear at the contact line and the number of which increases with evaporation and decreases sharply at the end of evaporation process. These gaps are always located at the junction of adjacent BM cells in the liquid layer and they are actually the origins of the BM cells in droplet but not the really breakage of the contact line. The influence of the substrate temperature on the instability patterns is studied and the critical thicknesses of liquid layer for the onsets of them are determined. The physical reasons underlying these phenomena are analyzed.



中文翻译:

沉积在挥发性液体层上的蒸发液滴中的Marangoni对流不稳定性

在这项工作中,实验研究了沉积在挥发性液体层上的蒸发液滴中的Marangoni对流模式。在两种不同的平衡状态下,在甲醇液滴表面观察到两种类型的马兰戈尼不稳定性。与水源和水槽一起沿方位角方向传播的热液波出现在完全漂浮在液层上的液体透镜中。随着蒸发,波数减少,并遵循幂定律,即透镜的无量纲半径和基板与环境之间的温差。对于部分漂浮在薄液体层上的液滴,表面图案以n折结构排列,在蒸发的早期,有用的冷带将液滴的顶点与接触线相连。在那之后,Bénard-Marangoni对流单元位于接触线附近,并沿径向向内移动,其动态行为与固体表面上液滴的动态行为完全相反。接触线上出现几个缝隙,其数量随蒸发而增加,在蒸发过程结束时急剧减少。这些间隙始终位于液层中相邻BM细胞的交界处,它们实际上是液滴中BM细胞的起源,而不是接触线的真正破裂。研究了基板温度对不稳定性图案的影响,并确定了液体层开始出现的临界厚度。分析了这些现象背后的物理原因。其动态行为与固体表面液滴的动态行为完全相反。接触线上出现几个缝隙,其数量随蒸发而增加,在蒸发过程结束时急剧减少。这些间隙始终位于液层中相邻BM细胞的交界处,它们实际上是液滴中BM细胞的起源,而不是接触线的真正破裂。研究了基板温度对不稳定性图案的影响,并确定了液体层开始出现的临界厚度。分析了这些现象背后的物理原因。其动态行为与固体表面液滴的动态行为完全相反。接触线上出现几个缝隙,其数量随蒸发而增加,在蒸发过程结束时急剧减少。这些间隙始终位于液层中相邻BM细胞的交界处,它们实际上是液滴中BM细胞的起源,而不是接触线的真正破裂。研究了基板温度对不稳定性图案的影响,并确定了液体层开始出现的临界厚度。分析了这些现象背后的物理原因。接触线上出现几个缝隙,其数量随蒸发而增加,在蒸发过程结束时急剧减少。这些间隙始终位于液层中相邻BM细胞的交界处,它们实际上是液滴中BM细胞的起源,而不是接触线的真正破裂。研究了基板温度对不稳定性图案的影响,并确定了液体层开始出现的临界厚度。分析了这些现象背后的物理原因。接触线上出现几个缝隙,其数量随蒸发而增加,在蒸发过程结束时急剧减少。这些间隙始终位于液层中相邻BM细胞的交界处,它们实际上是液滴中BM细胞的起源,而不是接触线的真正破裂。研究了基板温度对不稳定性图案的影响,并确定了液体层开始出现的临界厚度。分析了这些现象背后的物理原因。研究了基板温度对不稳定性图案的影响,并确定了液体层开始出现的临界厚度。分析了这些现象背后的物理原因。研究了基板温度对不稳定性图案的影响,并确定了液体层开始出现的临界厚度。分析了这些现象背后的物理原因。

更新日期:2021-02-15
down
wechat
bug