当前位置: X-MOL 学术Eur. J. Mech. B Fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental quantification of oscillating flow in finite-length straight elastic vessels for Newtonian and non-Newtonian fluids
European Journal of Mechanics - B/Fluids ( IF 2.6 ) Pub Date : 2021-02-13 , DOI: 10.1016/j.euromechflu.2021.02.001
Philipp Dörner , Wolfgang Schröder , Michael Klaas

To better understand the complex flow in arteries it is necessary to analyze the fluid–structure interaction between the time dependent velocity field, the non-Newtonian fluid, and the elastic blood vessels and to investigate the wall-shear stress distribution that develops in the elastic vessel during an oscillation cycle. The scope of this study is to quantify the influence of the viscoelastic fluid properties on the fluid–structure interaction and the wall-shear stress of a straight elastic vessel by analyzing oscillatory flow of both a Newtonian reference fluid and a non-Newtonian fluid. Unlike in Womersley’s analyses, an elastic vessel of finite length with a non-Newtonian fluid is investigated in this study. Furthermore, quantitative benchmark data for numerical fluid–structure interaction methods are provided. Time-resolved particle-image velocimetry, static pressure measurements, and wall detection are used to measure the velocity field, the pressure distribution, and the vessel dilatation with high temporal and spatial resolution. The mechanical properties of the vessel material are determined by a dynamic mechanical analysis and the viscosities of the Newtonian and the non-Newtonian fluid are measured by a rheometer. The fluid–structure interaction is measured for a sinusoidal oscillating flow in a Reynolds number range 472ReNF971 and 503ReNNF1065 for the Newtonian reference fluid and the non-Newtonian fluid. The Womersley number range is 5.97WoNF8.53 for the Newtonian reference fluid and 6.14WoNNF8.79 for the non-Newtonian fluid. The results show that the wall-shear stress maximum increases up to 32%–38% for the non-Newtonian fluid despite a 10%–45% higher wall-shear rate for the Newtonian reference fluid. Furthermore, the amplitudes of the dilatation and the pressure in the vessel are more pronounced for the non-Newtonian fluid.



中文翻译:

牛顿和非牛顿流体在有限长直弹性容器中振荡流的实验量化

为了更好地理解动脉中的复杂流动,有必要分析与时间有关的速度场,非牛顿流体和弹性血管之间的流体-结构相互作用,并研究在弹性中形成的壁-切应力分布。容器在振荡周期中。本研究的范围是通过分析牛顿参考流体和非牛顿流体的振荡流来量化粘弹性流体特性对直弹性容器的流固耦合和壁剪切应力的影响。与Womersley的分析不同,本研究对具有非牛顿流体的有限长度的弹性血管进行了研究。此外,还提供了用于数值流固耦合方法的定量基准数据。时间分辨粒子图像测速,静压测量和壁检测用于以高时空分辨率测量速度场,压力分布和血管扩张。容器材料的机械性能通过动态力学分析确定,牛顿流体和非牛顿流体的粘度通过流变仪测量。在雷诺数范围内测量正弦振荡流的流固耦合 通过动态力学分析确定容器材料的机械性能,并通过流变仪测量牛顿流体和非牛顿流体的粘度。在雷诺数范围内测量正弦振荡流的流固耦合 通过动态力学分析确定容器材料的机械性能,并通过流变仪测量牛顿流体和非牛顿流体的粘度。在雷诺数范围内测量正弦振荡流的流固耦合472[RËñF971503[RËññF1065用于牛顿参考流体和非牛顿流体。Womersley数范围是597w ^ØñF853 牛顿参考流体和 614w ^ØññF879对于非牛顿流体。结果表明,非牛顿流体的壁剪切应力最大值增加了32%–38%,尽管牛顿参考流体的壁剪切率提高了10%–45%。此外,对于非牛顿流体,扩张幅度和容器中的压力更为明显。

更新日期:2021-02-23
down
wechat
bug