当前位置: X-MOL 学术P-Adic Num. Ultrametr. Anal. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
log-Coulomb Gas with Norm-Density in $$p$$ -Fields
p-Adic Numbers, Ultrametric Analysis and Applications ( IF 0.5 ) Pub Date : 2021-02-12 , DOI: 10.1134/s2070046621010015
Webster Joe

Abstract

The main result of this paper is a formula for the integral

$$\int_{K^N}\rho(x)\big(\max_{i<j}|x_i-x_j|\big)^a\big(\min_{i<j}|x_i-x_j|\big)^b\prod_{i<j}|x_i-x_j|^{s_{ij}}\,|dx| ,$$

where \(K\) is a \(p\)-field (i.e., a nonarchimedean local field) with canonical absolute value \(|\cdot|\), \(N\geq 2\), \(a,b\in \mathbb{C} \), the function \(\rho:K^N\to \mathbb{C}\) has mild growth and decay conditions and factors through the norm \(\|x\|=\max_i|x_i|\), and \(|dx|\) is the usual Haar measure on \(K^N\). The formula is a finite sum of functions described explicitly by combinatorial data, and the largest open domain of values \((s_{ij})_{i<j}\in\mathbb{C}^{\binom{N}{2}}\) on which the integral converges absolutely is given explicitly in terms of these data and the parameters \(a\), \(b\), \(N\), and \(K\). We then specialize the formula to \(s_{ij}=\mathfrak{q}_i\mathfrak{q}_j\beta\), where \(\mathfrak{q}_1,\mathfrak{q}_2,\dots,\mathfrak{q}_N>0\) represent the charges of an \(N\)-particle log-Coulomb gas in \(K\) with background density \(\rho\) and inverse temperature \(\beta\). From this specialization we obtain a mixed-charge \(p\)-field analogue of Mehta’s integral formula, as well as formulas and low-temperature limits for the joint moments of \(\max_{i<j}|x_i-x_j|\) (the diameter of the gas) and \(\min_{i<j}|x_i-x_j|\) (the minimum distance between its particles).



中文翻译:

logp-Coulomb Gas具有范数密度的$$ p $$-字段

摘要

本文的主要结果是积分公式

$$ \ int_ {K ^ N} \ rho(x)\ big(\ max_ {i <j} | x_i-x_j | \ big)^ a \ big(\ min_ {i <j} | x_i-x_j | \大)^ b \ prod_ {i <j} | x_i-x_j | ^ {s_ {ij}} \\ || dx | ,$$

其中\(K \)是一个\(P \) -field(即,本地nonarchimedean字段)规范绝对值\(| \ CDOT | \) \(N \ GEQ 2 \) \(A,B \在\ mathbb {C} \)中,函数\(\ rho:K ^ N \ to \ mathbb {C} \)通过范数\(\ | x \ | = \ max_i具有温和的增长和衰减条件和因子| x_i | \)\(| dx | \)\(K ^ N \)的常用Haar度量。该公式是组合数据明确描述的函数的有限和,以及值\((s_ {ij})_ {i <j} \ in \ mathbb {C} ^ {\ binom {N} { 2}} \)根据这些数据和参数\(a \)\(b \)\(N \)\(K \)明确给出积分绝对收敛的值。然后,我们将公式专用于\(s_ {ij} = \ mathfrak {q} _i \ mathfrak {q} _j \ beta \),其中\(\ mathfrak {q} _1,\ mathfrak {q} _2,\ dots, \ mathfrak {q} _N> 0 \)表示\(N \)-对数库仑气体在\(K \)中的电荷,其背景密度为\(\ rho \)和逆温度为\(\ beta \)。从这种专业化中,我们得到混合电荷\(p \)赫塔积分公式的场模拟,以及\(\ max_ {i <j} | x_i-x_j | \)(气体直径)和\(\ min_ {i <j} | x_i-x_j | \)(其粒子之间的最小距离)。

更新日期:2021-02-15
down
wechat
bug