当前位置: X-MOL 学术Adv. Atmos. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Estimations of Land Surface Characteristic Parameters and Turbulent Heat Fluxes over the Tibetan Plateau Based on FY-4A/AGRI Data
Advances in Atmospheric Sciences ( IF 6.5 ) Pub Date : 2021-02-12 , DOI: 10.1007/s00376-020-0169-5
Nan Ge , Lei Zhong , Yaoming Ma , Yunfei Fu , Mijun Zou , Meilin Cheng , Xian Wang , Ziyu Huang

Accurate estimates of land surface characteristic parameters and turbulent heat fluxes play an important role in the understanding of land-atmosphere interaction. In this study, Fengyun-4A (FY-4A) Advanced Geostationary Radiation Imager (AGRI) satellite data and the China Land Data Assimilation System (CLDAS) meteorological forcing dataset CLDAS-V2.0 were applied for the retrieval of broadband albedo, land surface temperature (LST), radiation flux components, and turbulent heat fluxes over the Tibetan Plateau (TP). The FY-4A/AGRI and CLDAS-V2.0 data from 12 March 2018 to 30 April 2018 were first used to estimate the hourly turbulent heat fluxes over the TP. The time series data of in-situ measurements from the Tibetan Observation and Research Platform were divided into two halves—one for developing retrieval algorithms for broadband albedo and LST based on FY-4A, and the other for the cross validation. Results show the root-mean-square errors (RMSEs) of the FY-4A retrieved broadband albedo and LST were 0.0309 and 3.85 K, respectively, which verifies the applicability of the retrieval method. The RMSEs of the downwelling/upwelling shortwave radiation flux and downwelling/upwelling longwave radiation flux were 138.87/32.78 W m−2 and 51.55/17.92 W m−2, respectively, and the RMSEs of net radiation flux, sensible heat flux, and latent heat flux were 58.88 W m−2, 82.56 W m−2 and 72.46 W m−2, respectively. The spatial distributions and diurnal variations of LST and turbulent heat fluxes were further analyzed in detail.

更新日期:2021-02-15
down
wechat
bug