当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Systematic Search of Suitable Metal–Organic Frameworks for Thermal Energy-Storage Applications with Low Global Warming Potential Refrigerants
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2021-02-11 , DOI: 10.1021/acssuschemeng.0c07797
Edder J. García 1, 2 , Daniel Bahamon 1, 2, 3 , Lourdes F. Vega 1, 2, 3
Affiliation  

Refrigeration processes based on physical adsorption are promising candidates for replacing high energy-intensive vapor compression cycles. Such adsorption-based refrigeration cycles facilitate the application of renewable energies and allow energy storage, that is, both cold thermal energy storage (CTES) and TES. In CTES and TES applications, the choice of a suitable adsorbent-refrigerant working pair plays a crucial role. In this work, we have conducted the first computational screening of experimentally available metal–organic frameworks (MOFs) for CTES and TES units using three low-global warming potential (GWP), fourth-generation refrigerants: hydrofluoroolefin (HFO) R1234yf, R1234ze(E), and the blend R513A, in order to search for the best MOF-refrigerant pair for this application. For comparison, the third-generation refrigerant R134a currently in use is also considered. The choice of these refrigerants is based on the need to deploy low-GWP refrigerants after the ratification of Kigali’s agreement, suitable for different cooling applications. A total of 40 MOFs, belonging to several representative structural families were studied, including IRMOF, M-MOF-74, ZIF, COF, NU, and MIL topologies. We conducted Grand Canonical Monte Carlo simulations to establish a relationship between the adsorptive capacity and material properties. Results show that MOFs with open metal sites have a strong interaction with R1234yf and R1234ze(E), making them more suitable for TES. Conversely, MOFs presenting large pore sizes, such as Cr-MIL-101 and IRMOF-10, MOF-200, have a low affinity for HFO and large working capacities, showing a considerably higher CTES energy density than the currently used activated carbons/R134a pairs. It is also observed that the M-MOF-74 family is not suitable for CTES under the given operating conditions, but some of them may be appropriate for TES applications. Therefore, this study guides the selection of MOFs suitable for thermal-storage applications with this new class of low-GWP refrigerants, helping in meeting cooling global demand combined with intermittent sources of energy in a step toward achieving the sustainable energy scenario.

中文翻译:

系统搜索适用于具有低全球变暖潜能的热能储存应用的金属有机框架

基于物理吸附的制冷工艺有望取代高能耗的蒸气压缩循环。这种基于吸附的制冷循环促进了可再生能源的应用,并允许进行能量存储,即冷热能存储(CTES)和TES。在CTES和TES应用中,选择合适的吸附剂-制冷剂工作对至关重要。在这项工作中,我们使用三种低全球变暖潜能(GWP)第四代制冷剂:氢氟烯烃(HFO)R1234yf,R1234ze( E)和混合R513A,以便为此应用搜索最佳的MOF制冷剂对。为了比较,还考虑了当前使用的第三代制冷剂R134a。这些制冷剂的选择是基于在批准基加利协议之后部署低全球升温潜能值低的制冷剂的需要,适用于不同的制冷应用。共研究了40个MOF,它们属于几个代表性的结构族,包括IRMOF,M-MOF-74,ZIF,COF,NU和MIL拓扑。我们进行了Grand Canonical蒙特卡洛模拟,以建立吸附能力与材料性能之间的关系。结果表明,具有开放金属位点的MOF与R1234yf和R1234ze(E)有很强的相互作用,使其更适合于TES。相反,呈现大孔径的MOF(例如Cr-MIL-101和IRMOF-10,MOF-200)对HFO的亲和力低,工作能力大,与目前使用的活性炭/ R134a对相比,CTES能量密度要高得多。还可以观察到,在给定的工作条件下,M-MOF-74系列不适用于CTES,但是其中一些可能适用于TES应用。因此,本研究指导使用这种新型的低全球升温潜能值的制冷剂选择适合于储热应用的MOF,有助于满足全球冷却需求以及间歇性能源的需求,从而朝着实现可持续能源的方向迈进。
更新日期:2021-03-01
down
wechat
bug