当前位置: X-MOL 学术Biogeosciences › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Incorporating the stable carbon isotope 13C in the ocean biogeochemical component of the Max Planck Institute Earth System Model
Biogeosciences ( IF 3.9 ) Pub Date : 2021-02-12 , DOI: 10.5194/bg-2021-32
Bo Liu , Katharina D. Six , Tatiana Ilyina

Abstract. Direct comparison between paleo oceanic δ13C records and model results facilitates assessing simulated distributions and properties of water masses in the past. To accomplish this, we include a new representation of the stable carbon isotope 13C into the HAMburg Ocean Carbon Cycle model (HAMOCC), the ocean biogeochemical component of the Max Planck Institute Earth System Model (MPI-ESM). 13C is explicitly resolved for all existing oceanic carbon pools. We account for fractionation during air-sea gas exchange and for biological fractionation εp associated with photosynthetic carbon fixation during phytoplankton growth. We examine two εp parameterisations of different complexity: εpPopp varies with surface dissolved CO2 concentration (Popp et al., 1989), while εpLaws additionally depends on local phytoplankton growth rates (Laws et al., 1995). When compared to observations of δ13C in dissolved inorganic carbon (DIC), both parameterisations yield similar performance. However, with regard to δ13C in particulate organic carbon εpPopp shows a considerably improved performance than εpLaws, because the latter results in a too strong preference for 12C. The model also well reproduces the oceanic 13C Suess effect, i.e. the intrusion of the isotopically light anthropogenic CO2 into the ocean, based on comparison to other existing 13C models and to observation-based oceanic carbon uptake estimates over the industrial period. We further apply the approach of Eide et al. (2017a), who derived the first global oceanic 13C Suess effect estimate based on observations, to our model data that has ample spatial and temporal coverage. With this we are able to analyse in detail the underestimation of 13C Suess effect by this approach as it has been noted by Eide et al. (2017a). Based on our model we find underestimations of 13C Suess effect at 200 m by 0.24 ‰ in the Indian Ocean, 0.21 ‰ in the North Pacific, 0.26 ‰ in the South Pacific, 0.1 ‰ in the North Atlantic and 0.14 ‰ in the South Atlantic. We attribute the major sources of the underestimation to two assumptions in Eide et al. (2017a)'s approach: a spatially-constant preformed component of δ13CDIC in year 1940 and neglecting 13C Suess effect in CFC-12 free water.

中文翻译:

在马克斯·普朗克研究所地球系统模型的海洋生物地球化学成分中纳入稳定的碳同位素13 C

摘要。古海洋δ之间的直接比较13 Ç记录和模型结果评估功能有助于模拟分布和过去水团的性质。为了实现这一目标,我们将稳定碳同位素13 C的新表示形式引入了汉堡堡海洋碳循环模型(HAMOCC),这是马克斯·普朗克研究所地球系统模型(MPI-ESM)的海洋生物地球化学成分。13 C被明确地解决了所有现有的海洋碳库。我们考虑在海气气体交换和生物分馏ε分馏p浮游植物的生长过程中与光合固碳相关。我们介绍两种ε p不同复杂的参数化:εp波普与表面溶解的CO变化2浓度(Popp等人,1989),而ε p法律另外取决于本地浮游植物生长速率(Laws等人,1995)。当相比于δ的观察13中溶解的无机碳(DIC)C,两参数化得到类似的性能。然而,对于δ 13中颗粒有机碳εÇ p Popp的节目比ε相当改进的性能p,因为在太强烈偏好后者结果12 C.该模型还很好再现海洋13C Suess效应,即与其他现有的13 C模型进行比较,以及与工业期内基于观测的海洋碳吸收量估计值相比,同位素轻的人为CO 2进入海洋。我们进一步应用Eide等人的方法。(2017a),他根据观测结果得出了我们的第一个全球大洋13 C Suess效应估计值,并将其推导出我们的具有足够时空覆盖范围的模型数据。这样,我们就可以详细分析这种方法对13 C Suess效应的低估,正如Eide等人已经指出的那样。(2017a)。根据我们的模型,我们发现低估了13C在200 m处的Suess效应在印度洋为0.24‰,在北太平洋为0.21‰,在南太平洋为0.26‰,在北大西洋为0.1‰,在南大西洋为0.14‰。我们将低估的主要来源归因于Eide等人的两个假设。(2017A)的方法:δ的空间上恒定预成型部件13 Ç DIC在1940年和忽视13在CFC-12自由水C休斯效果。
更新日期:2021-02-12
down
wechat
bug