当前位置: X-MOL 学术Vehicle Syst. Dyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing pantograph-catenary dynamic performance using an inertance-integrated damping system
Vehicle System Dynamics ( IF 3.5 ) Pub Date : 2021-02-11 , DOI: 10.1080/00423114.2021.1884273
Ming Zhu 1 , Sara Ying Zhang 2 , Jason Zheng Jiang 1 , John Macdonald 1 , Simon Neild 1 , Pedro Antunes 3, 4 , Joâo Pombo 3, 4, 5 , Stephen Cullingford 6 , Matthew Askill 6 , Stephen Fielder 6
Affiliation  

ABSTRACT

For modern electrical rail systems, the pantograph-catenary dynamic performance is one of the most critical challenges. Too much fluctuation in contact forces leads to either accelerated wear of the contacting components or losses of contact and, consequently, arcing. In this work, inertance-integrated pantograph damping systems are investigated with the objective of reducing the contact force standard deviation. Firstly, a multibody pantograph model is developed with its accuracy compared with experimental data. The model is improved through the calibration of the pantograph head suspension parameters and the introduction of both non-ideal joint and flexibility effects. Using the calibrated model, beneficial inertance-integrated damping systems are identified for the pantograph suspension. The results show that the configuration with one inerter provides the best performance among other candidate layouts and contends a 40% reduction of the maximum standard deviation of the contact force over the whole operating speed range in the numerical modelling scenario analysed. Considering the identified configuration, time-domain analysis and modal analysis are investigated. It has been shown that the achieved improvement is due to the fact that with the beneficial inertance-integrated damping system, the first resonance frequency of the pantograph system coincides with the natural frequency of the catenary system.



中文翻译:

使用惯性集成阻尼系统提高受电弓-悬链线动态性能

摘要

对于现代电气轨道系统,受电弓-接触网动态性能是最关键的挑战之一。接触力的太大波动会导致接触部件加速磨损或失去接触,从而导致电弧放电。在这项工作中,研究了惯性集成受电弓阻尼系统,目的是降低接触力标准偏差。首先,建立了多体受电弓模型,并将其准确性与实验数据进行了比较。通过对受电弓头悬架参数的校准以及非理想关节和柔度效应的引入,对模型进行了改进。使用校准模型,为受电弓悬架确定了有益的惯性集成阻尼系统。结果表明,在所分析的数值模拟场景中,具有一个惯性器的配置在其他候选布局中提供了最佳性能,并且在整个运行速度范围内接触力的最大标准偏差降低了 40%。考虑到已识别的配置,研究了时域分析和模态分析。已经证明,所取得的改进是由于有益的惯性集成阻尼系统,受电弓系统的第一共振频率与接触网系统的固有频率一致。考虑到已识别的配置,研究了时域分析和模态分析。已经证明,所取得的改进是由于有益的惯性集成阻尼系统,受电弓系统的第一共振频率与接触网系统的固有频率一致。考虑到已识别的配置,研究了时域分析和模态分析。已经证明,所取得的改进是由于有益的惯性集成阻尼系统,受电弓系统的第一共振频率与接触网系统的固有频率一致。

更新日期:2021-02-11
down
wechat
bug