当前位置: X-MOL 学术Solid State Ionics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of Mn2+ on mechanical, dynamical, and structural properties of solid electrolyte interphase in Li-ion batteries: A molecular dynamics simulation study
Solid State Ionics ( IF 3.0 ) Pub Date : 2021-02-12 , DOI: 10.1016/j.ssi.2021.115573
Mahsa Ebrahiminia , Cun Wang , Dengpan Dong , Lidan Xing , Justin B. Hooper , Dmitry Bedrov

The influence of different amounts of Mn2+ contaminants on mechanical, dynamical, and structural properties of a solid electrolyte interphase (SEI) has been studied using atomistic molecular dynamics and Monte-Carlo simulations employing the many-body polarizable APPLE&P force field. Bulk SEI systems comprised of amorphous Li2CO3 with some fraction of cations replaced with Mn2+ ions have been investigated over a wide temperature range. Replacement of 5, 10, or 20% of positive charges with Mn2+ ions resulted in 3, 6, or 11% increase in density and leading to approximately a 20, 50, or 100 K increase in the glass transition temperature (Tg), respectively. Cations and anions showed similar dynamics at high temperatures, however at temperatures approaching Tg the CO32− and Mn2+ ions showed an expected divergent slowing down in dynamics therefore forming a glassy matrix in which Li+ ions continued to show significant movements, i.e. Li+ dynamics showed a decoupling from the dynamics of other ions. The Li+ conductivity values on the order of 10−6 S/cm have been observed for all concentrations at room temperature. Addition of Mn2+ ions also resulted in an increase of the shear modulus leading to values higher than 8 GPa at room temperature, which is high enough to potentially suppress the Li metal dendrite growth.



中文翻译:

Mn 2+对锂离子电池固体电解质相间力学,动力学和结构性能的影响:分子动力学模拟研究

已使用原子分子动力学和采用多体极化APPLE&P力场的蒙特卡罗模拟研究了不同数量的Mn 2+污染物对固体电解质中间相(SEI)的机械,动力学和结构性能的影响。已经在宽温度范围内研究了由非晶态Li 2 CO 3组成的本体SEI系统,其中部分阳离子被Mn 2+离子取代。用Mn 2+离子替代5、10或20%的正电荷会导致密度增加3%,6%或11%,并导致玻璃化转变温度(T g)大约增加20、50或100 K), 分别。阳离子和阴离子在高温下表现出相似的动力学,但是在接近T g的温度下,CO 3 2-和Mn 2+离子表现出预期的发散速度减慢,因此形成玻璃状基质,其中Li +离子继续表现出明显的运动,即Li +动力学表现出与其他离子动力学的解耦。对于 室温下的所有浓度,已经观察到Li +电导率值约为10 -6 S / cm。Mn 2+的添加 离子还导致剪切模量增加,导致在室温下的值高于8 GPa,该值足以抑制锂金属枝晶的生长。

更新日期:2021-02-12
down
wechat
bug