当前位置: X-MOL 学术J. Nondestruct. Eval. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nondestructive Evaluation of Mechanical Properties of Femur Bone
Journal of Nondestructive Evaluation ( IF 2.6 ) Pub Date : 2021-02-12 , DOI: 10.1007/s10921-021-00754-0
Diplesh Gautam , Venkatesh K. P. Rao

In a human body, the femur is one of the strongest and longest bones and commonly fractured bone shown in the last decades, especially in elderly humans. Common femur fractures are caused due to violent trauma and severe accidents. The complex structure and response of the bone under dynamic loading conditions will provide extensive information about the mechanical properties of the bone. In this work, we use a non-contact measurement technique using a Position sensing detector (PSD) to measure the natural frequencies and their corresponding mode shapes. The bone sample excited by the impact hammer, and its response is measured using PSD. Sequential measurements are taken on the sample and base; we take the transfer function of the sample with respect to base to measure the natural frequency of bone. Mechanical property such as elastic modulus of the bone is evaluated using measured natural frequencies, and compared with numerical results. The Modulus of elasticity of the bone is found to be 14.8 GPa. Modal analysis was carried to evaluate the natural frequencies and corresponding mode shapes. Numerical results are found to be within 9% of the experimentally measured results. Random vibration analysis was done to emulate the real-time testing for the bone sample. The measured spectrum follows the numerical data. This experimental technique will aid in the nondestructive evaluation of the mechanical properties of the bone sample. Further,this nondestructive technique can be extended for various biological specimens for calculating the mechanical response.



中文翻译:

股骨骨力学性能的无损评价

在人体中,股骨是近几十年来表现出的最强,最长的骨骼之一,并且通常是骨折的骨骼,尤其是在老年人中。常见的股骨骨折是由于剧烈创伤和严重事故引起的。骨骼在动态载荷条件下的复杂结构和响应将提供有关骨骼机械性能的大量信息。在这项工作中,我们使用一种非接触式测量技术,该技术使用位置感应检测器(PSD)来测量固有频率及其相应的模式形状。冲击锤激发的骨样品及其响应通过PSD进行测量。在样品和基础上进行顺序测量;我们采用样本相对于基的传递函数来测量骨骼的固有频率。使用测得的固有频率评估机械性能(例如骨骼的弹性模量),并将其与数值结果进行比较。发现骨骼的弹性模量为14.8 GPa。进行模态分析以评估固有频率和相应的模态形状。发现数值结果在实验测量结果的9%以内。进行了随机振动分析,以模拟骨骼样品的实时测试。测得的光谱遵循数值数据。这种实验技术将有助于对骨样品的机械性能进行无损评估。此外,这种非破坏性技术可以扩展到各种生物样本以计算机械响应。并与数值结果进行比较。发现骨骼的弹性模量为14.8 GPa。进行模态分析以评估固有频率和相应的模态形状。发现数值结果在实验测量结果的9%以内。进行了随机振动分析,以模拟骨骼样品的实时测试。测得的光谱遵循数值数据。这种实验技术将有助于对骨样品的机械性能进行无损评估。此外,这种非破坏性技术可以扩展到各种生物样本以计算机械响应。并与数值结果进行比较。发现骨骼的弹性模量为14.8 GPa。进行模态分析以评估固有频率和相应的模态形状。发现数值结果在实验测量结果的9%以内。进行了随机振动分析,以模拟骨骼样品的实时测试。测得的光谱遵循数值数据。这种实验技术将有助于对骨样品的机械性能进行无损评估。此外,这种非破坏性技术可以扩展到各种生物样本以计算机械响应。发现数值结果在实验测量结果的9%以内。进行了随机振动分析,以模拟骨骼样品的实时测试。测得的光谱遵循数值数据。这种实验技术将有助于对骨样品的机械性能进行无损评估。此外,这种非破坏性技术可以扩展到各种生物样本以计算机械响应。发现数值结果在实验测量结果的9%以内。进行了随机振动分析,以模拟骨骼样品的实时测试。测得的光谱遵循数值数据。这种实验技术将有助于对骨样品的机械性能进行无损评估。此外,这种非破坏性技术可以扩展到各种生物样本以计算机械响应。

更新日期:2021-02-12
down
wechat
bug