当前位置: X-MOL 学术Comput. Geosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Uncertainty quantification for uranium production in mining exploitation by In Situ Recovery
Computational Geosciences ( IF 2.5 ) Pub Date : 2021-02-12 , DOI: 10.1007/s10596-020-10018-x
Jean Langanay , Thomas Romary , Xavier Freulon , Valerie Langlais , Gwenaele Petit , Vincent Lagneau

Uranium In Situ Recovery (ISR) is based on the direct leaching of the uranium ore in the deposit by a mining solution. Fluid flow and geochemical reaction in the reservoir are difficult to predict due to geological, petrophysical and geochemical uncertainties. The reactive transport simulation code used to model ISR is very sensitive to the spatial distribution of physical and chemical properties of the deposit. Stochastic geostatistical models are used to represent the uncertainty on the spatial distribution of geological properties. The direct propagation of geological uncertainties by multiple ISR mining simulations is intractable in an industrial context. The CPU time needed to perform one ISR numerical simulation is too heavy. This work presents a way to propagate geological uncertainties into uranium production uncertainties at a reduced computational cost, thanks to a scenario reduction method. A subset of geostatistical simulations is built to approximate the variability of a larger set. The selection is obtained using a proxy of reactive transport simulation. The main contribution of this work is the development of the proxy, which is based on an artificial mineral exploitation that has common properties with uraninite. It allows the discrimination of geostatistical realizations in terms of potential uranium production. Then, the ISR simulation carried out with the selected geostatistical realizations gives a good approximation of the uranium production variability over the whole set of geostatistical simulations. This approximation is then used to quantify the uncertainties on the uranium production. The proposed approach is assessed on real case studies.



中文翻译:

原位回收技术用于采矿开采中铀生产的不确定性量化

铀原位回收(ISR)基于采矿解决方案直接浸出矿床中的铀矿石。由于地质,岩石物理和地球化学的不确定性,储层中的流体流动和地球化学反应难以预测。用于建模ISR的反应性运输模拟代码对矿床的物理和化学性质的空间分布非常敏感。随机地统计模型用于表示地质属性空间分布的不确定性。在工业环境中,通过多个ISR采矿模拟直接传播地质不确定性是很难的。执行一个ISR数值模拟所需的CPU时间太重。这项工作提出了一种通过减少情景的方法,以降低的计算成本将地质不确定性传播到铀生产不确定性中的方法。建立了地统计学模拟的子集,以近似较大集合的可变性。使用反应性运输模拟的代理获得选择。这项工作的主要贡献是代理产品的开发,该产品是基于人造矿物的开采,而人造矿物具有与尿素的共同特性。它可以根据潜在的铀产量来区分地统计实现。然后,利用选定的地统计方法进行的ISR模拟可以在整个地统计方法模拟中很好地近似铀生产的可变性。然后,该近似值用于量化铀产量的不确定性。在实际案例研究中评估了所建议的方法。

更新日期:2021-02-12
down
wechat
bug