当前位置: X-MOL 学术Environ. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sealing Porous Media through Calcium Silicate Reactions with CO2 to Enhance the Security of Geologic Carbon Sequestration
Environmental Engineering Science ( IF 1.8 ) Pub Date : 2021-03-17 , DOI: 10.1089/ees.2020.0369
Florence T. Ling 1, 2 , Dan A. Plattenberger 3 , Catherine A. Peters 2 , Andres F. Clarens 3
Affiliation  

The injection of CO2 deep underground, i.e., geologic carbon sequestration, has attracted considerable attention for climate change mitigation. A reliable caprock for secure containment is essential, alongside strategies for sealing flow paths to prevent leaks. In this study, we explore ways in which reactions of CO2 with CaSiO3 can be used for targeted mineral precipitation and permeability control in situ. Previous work has suggested that certain CaSiO3 polymorphs can produce pore-filling precipitates that successfully inhibit flow, whereas others produce precipitates with little impact. In this work, a one-dimensional reactive transport model was developed for a centimeter-scale system to explore connections between the pore and continuum scale. The model considers four reactions involving CaSiO3, CaCO3, SiO2(am), and the crystalline calcium silicate hydrate (CCSH) tobermorite. A key feature is incorporation of microporosity, with an attempt to represent favorable volume expanding changes from CCSH precipitation in porous media. At 150°C and 1.1 MPa CO2, representing typical laboratory conditions, the model predicts significant permeability drop when reacting the pseudowollastonite CaSiO3 polymorph at elevated pH to produce CaCO3, SiO2(am), and tobermorite. The effect of increasing pH via by NaOH addition, which increases CO2 solubility, increases CaSiO3 dissolution, and supports tobermorite supersaturation. In contrast, reaction of the wollastonite polymorph results in CaCO3 and SiO2(am) formation, with limited permeability impact. Wollastonite's lower solubility and slower dissolution rate inhibits tobermorite formation. Simulation at the high pressures representative of deep subsurface field conditions (40°C and 7.5 MPa CO2) suggests that reaction of CaSiO3 with CO2 could reduce permeability and seal unwanted leakage pathways.

中文翻译:

通过硅酸钙与二氧化碳的反应来密封多孔介质,以增强地质固碳的安全性

在地下深处注入CO 2,即地质​​固碳,已经为缓解气候变化吸引了相当多的关注。可靠的保护盖是必不可少的,此外,还有用于密封流路以防止泄漏的策略。在这项研究中,我们探索了将CO 2与CaSiO 3的反应用于目标矿物沉淀和原位渗透率控制的方法。先前的工作表明某些CaSiO 3多晶型物可产生可成功抑制流动的充填孔的沉淀物,而其他多晶型物产生的影响却很小。在这项工作中,为厘米尺度的系统开发了一个一维反应性传输模型,以探索孔隙和连续尺度之间的联系。该模型考虑了四个反应,分别涉及CaSiO 3,CaCO 3,SiO 2(am)和结晶硅酸钙水合物(CCSH)雪铁矿。一个关键特征是微孔的结合,试图代表多孔介质中CCSH沉淀产生的有利的体积膨胀变化。在150°C和1.1 MPa CO 2下代表典型的实验室条件,该模型预测当假硅灰石CaSiO 3多晶型物在升高的pH下反应生成CaCO 3,SiO 2(am)和钙蒙脱石,渗透率会显着下降。通过添加NaOH来增加pH值的效果,这可以增加CO 2的溶解度,增加CaSiO 3的溶解度,并支持黑钨矿的过饱和。相反,硅灰石多晶型物的反应导致CaCO 3和SiO 2(am)地层,对渗透性的影响有限。硅灰石的较低溶解度和较慢的溶解速度抑制了硅铁矿的形成。在代表深地下场条件(40°C和7.5 MPa CO 2)的高压下进行的模拟表明,CaSiO 3与CO 2的反应可能会降低渗透率并密封不希望的泄漏途径。
更新日期:2021-03-21
down
wechat
bug