当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On thermally managing lithium-ion battery cells by air-convection aspirated in tetrahedral lattice porous cold plates
Applied Thermal Engineering ( IF 6.1 ) Pub Date : 2021-02-10 , DOI: 10.1016/j.applthermaleng.2021.116711
Young Woo Son , Tongbeum Kim , Tian Jian Lu , Se-Myong Chang

The faster charge/discharge of lithium-ion batteries that power unmanned aerial vehicles (or drones) increases heat emission substantially, thus requiring effective thermal management solutions. In this study, we present such a thermal solution for prismatic lithium-ion battery cells managed by “naturally aspirated air-convection” in tetrahedral lattice porous cold plates as a multi-functional application that requires a core element for simultaneous thermal and structural load bearing. To demonstrate the effectiveness of the solution, a series of steady-state numerical simulations and experiments were performed under specific thermal/flight conditions. Results showed that aspirated air-convection in multiple tetrahedral lattice porous cold plates, each sandwiched between two battery cells, enables the operating temperature of the battery cells to fall within a typical safety margin during forward flight. In comparison to empty cold plates as reference, an equivalent thermal performance was provided although higher pressure drop in the porous cold plates substantially reduces the flowrate of the aspirated convective flow than that in the reference cold plates. However, the porous cold plates could additionally mitigate mechanical fracture and structural degradation resulting in irreversible capacity loss due to repeatable thermal expansion/shrinkage during the charge and discharge. Thus, the tetrahedral porous cold plates may provide effective multi-functionality that is required for the cell-level thermal management of prismatic lithium-ion batteries.



中文翻译:

关于通过抽吸四面体晶格多孔冷板中的空气对流来热管理锂离子电池的方法

为无人驾驶飞机(或无人机)供电的锂离子电池更快的充电/放电会大大增加热量的散发,因此需要有效的热管理解决方案。在这项研究中,我们为四面体晶格多孔冷板中的“自然吸气对流”管理的棱柱形锂离子电池提供了一种散热解决方案,这是一种多功能应用,需要同时承受热和结构负荷的核心元件。为了证明该解决方案的有效性,在特定的热/飞行条件下进行了一系列稳态数值模拟和实验。结果表明,多个四面体多孔多孔冷板中的抽气对流,每个冷板夹在两个电池之间,使电池在向前飞行期间的工作温度降到典型的安全裕度之内。与作为参考的空冷板相比,提供了相当的热性能,尽管与参考冷板相比,多孔冷板中较高的压降大大降低了对流的流速。然而,由于在充电和放电期间可重复的热膨胀/收缩,多孔冷板还可以减轻机械断裂和结构退化,从而导致不可逆的容量损失。因此,四面体多孔冷板可提供棱柱形锂离子电池的电池级热管理所需的有效多功能。与作为参考的空冷板相比,提供了等效的热性能,尽管与参考冷板相比,多孔冷板中较高的压降大大降低了对流的流速。然而,由于在充电和放电期间可重复的热膨胀/收缩,多孔冷板还可以减轻机械断裂和结构退化,从而导致不可逆的容量损失。因此,四面体多孔冷板可提供棱柱形锂离子电池的电池级热管理所需的有效多功能。与作为参考的空冷板相比,提供了等效的热性能,尽管与参考冷板相比,多孔冷板中较高的压降大大降低了对流的流速。然而,由于在充电和放电期间可重复的热膨胀/收缩,多孔冷板还可以减轻机械断裂和结构退化,从而导致不可逆的容量损失。因此,四面体多孔冷板可提供棱柱形锂离子电池的电池级热管理所需的有效多功能。尽管与参考冷板相比,多孔冷板中较高的压降大大降低了吸入对流的流速,但仍提供了等效的热性能。然而,由于在充电和放电期间可重复的热膨胀/收缩,多孔冷板还可以减轻机械断裂和结构退化,从而导致不可逆的容量损失。因此,四面体多孔冷板可提供棱柱形锂离子电池的电池级热管理所需的有效多功能。尽管与参考冷板相比,多孔冷板中较高的压降大大降低了吸入对流的流速,但仍提供了等效的热性能。然而,由于在充电和放电期间可重复的热膨胀/收缩,多孔冷板还可以减轻机械断裂和结构退化,从而导致不可逆的容量损失。因此,四面体多孔冷板可提供棱柱形锂离子电池的电池级热管理所需的有效多功能。多孔冷板还可以减轻机械断裂和结构退化,这是由于在充电和放电过程中可重复的热膨胀/收缩导致不可逆的容量损失。因此,四面体多孔冷板可提供棱柱形锂离子电池的电池级热管理所需的有效多功能。多孔冷板还可以减轻机械断裂和结构退化,这是由于在充电和放电过程中可重复的热膨胀/收缩导致不可逆的容量损失。因此,四面体多孔冷板可提供棱柱形锂离子电池的电池级热管理所需的有效多功能。

更新日期:2021-02-18
down
wechat
bug