当前位置: X-MOL 学术arXiv.cs.SC › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On exact division and divisibility testing for sparse polynomials
arXiv - CS - Symbolic Computation Pub Date : 2021-02-09 , DOI: arxiv-2102.04826
Pascal Giorgi, Bruno Grenet, Armelle Perret du Cray

Assessing that a sparse polynomial G divides another sparse polynomial F is not yet known to admit a polynomial time algorithm. While computing the quotient Q = F quo G can be done in polynomial time with respect to the sparsities of F, G and Q, it is not yet sufficient to get a polynomial time divisibility test in general. Indeed, the sparsity of the quotient Q can be exponentially larger than the ones of F and G. In the favorable case where the sparsity #Q of the quotient is polynomial, the best known algorithm to compute Q has a non-linear factor #G#Q in the complexity, which is not optimal. In this work, we are interested in the two aspects of this problem. First, we propose a new randomized algorithm that computes the quotient of two sparse polynomials when the division is exact. Its complexity is quasi-linear in the sparsities of F, G and Q. Our approach relies on sparse interpolation and it works over any finite fields or the ring of integers. Then, as a step toward faster divisibility testing, we provide a new polynomial time algorithm when the divisor has some specific shapes. More precisely, we reduce the problem to finding a polynomial S such that QS is sparse and testing divisibility by S can be done in polynomial time. We identify some structure patterns in the divisor G for which we can efficiently compute such a polynomial S.

中文翻译:

关于稀疏多项式的精确除法和除数检验

尚不知道使用一个稀疏多项式G除以另一个稀疏多项式F即可接纳多项式时间算法。相对于F,G和Q的稀疏性,可以在多项式时间内计算商Q = F quo G,但一般而言,尚不足以得到多项式时间可除性检验。确实,商Q的稀疏度可以比F和G的指数级大。在商稀疏#Q是多项式的有利情况下,最著名的计算Q的算法具有非线性因子#G #Q的复杂度不是最佳的。在这项工作中,我们对这个问题的两个方面都很感兴趣。首先,我们提出一种新的随机算法,当除法精确时,该算法可计算两个稀疏多项式的商。在F,G和Q的稀疏度中,其复杂度是准线性的。我们的方法依赖于稀疏插值,并且可以在任何有限域或整数环上工作。然后,作为迈向更快的除数测试的一步,当除数具有某些特定形状时,我们提供了一种新的多项式时间算法。更准确地说,我们将问题简化为找到多项式S,使得QS稀疏,并且可以在多项式时间内完成由S进行除数的测试。我们在除数G中确定一些结构模式,可以有效地计算这样的多项式S。我们将问题简化为找到多项式S,使得QS稀疏,并且可以在多项式时间内完成用S进行除数的测试。我们在除数G中确定一些结构模式,可以有效地计算这样的多项式S。我们将问题简化为找到多项式S,使得QS稀疏,并且可以在多项式时间内完成用S进行除数的测试。我们在除数G中确定一些结构模式,可以有效地计算这样的多项式S。
更新日期:2021-02-10
down
wechat
bug