当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A universal 3D imaging sensor on a silicon photonics platform
Nature ( IF 50.5 ) Pub Date : 2021-02-10 , DOI: 10.1038/s41586-021-03259-y
Christopher Rogers 1 , Alexander Y Piggott 1 , David J Thomson 2 , Robert F Wiser 1 , Ion E Opris 3 , Steven A Fortune 1 , Andrew J Compston 1 , Alexander Gondarenko 1 , Fanfan Meng 2 , Xia Chen 2 , Graham T Reed 2 , Remus Nicolaescu 1
Affiliation  

Accurate three-dimensional (3D) imaging is essential for machines to map and interact with the physical world1,2. Although numerous 3D imaging technologies exist, each addressing niche applications with varying degrees of success, none has achieved the breadth of applicability and impact that digital image sensors have in the two-dimensional imaging world3,4,5,6,7,8,9,10. A large-scale two-dimensional array of coherent detector pixels operating as a light detection and ranging system could serve as a universal 3D imaging platform. Such a system would offer high depth accuracy and immunity to interference from sunlight, as well as the ability to measure the velocity of moving objects directly11. Owing to difficulties in providing electrical and photonic connections to every pixel, previous systems have been restricted to fewer than 20 pixels12,13,14,15. Here we demonstrate the operation of a large-scale coherent detector array, consisting of 512 pixels, in a 3D imaging system. Leveraging recent advances in the monolithic integration of photonic and electronic circuits, a dense array of optical heterodyne detectors is combined with an integrated electronic readout architecture, enabling straightforward scaling to arbitrarily large arrays. Two-axis solid-state beam steering eliminates any trade-off between field of view and range. Operating at the quantum noise limit16,17, our system achieves an accuracy of 3.1 millimetres at a distance of 75 metres when using only 4 milliwatts of light, an order of magnitude more accurate than existing solid-state systems at such ranges. Future reductions of pixel size using state-of-the-art components could yield resolutions in excess of 20 megapixels for arrays the size of a consumer camera sensor. This result paves the way for the development and proliferation of low-cost, compact and high-performance 3D imaging cameras that could be used in applications from robotics and autonomous navigation to augmented reality and healthcare.



中文翻译:

硅光子平台上的通用 3D 成像传感器

准确的三维 (3D) 成像对于机器映射物理世界并与之交互至关重要1,2。尽管存在多种 3D 成像技术,每种技术都针对小众应用取得了不同程度的成功,但没有一种技术达到数字图像传感器在二维成像领域3,4,5,6,7,8 所具有的广泛适用性和影响力, 9,10。作为光探测和测距系统运行的相干探测器像素的大规模二维阵列可以用作通用 3D 成像平台。这样的系统将提供高深度精度和抗阳光干扰能力,以及直接测量移动物体速度的能力11. 由于难以为每个像素提供电气和光子连接,以前的系统被限制在少于 20 个像素12,13,14,15。在这里,我们演示了在 3D 成像系统中由 512 个像素组成的大规模相干探测器阵列的操作。利用光子和电子电路单片集成的最新进展,密集的光学外差检测器阵列与集成电子读出架构相结合,可以直接扩展到任意大的阵列。双轴固态光束控制消除了视野和范围之间的任何权衡。在量子噪声极限下运行16,17,我们的系统在仅使用 4 毫瓦的光时在 75 米的距离处达到 3.1 毫米的精度,比该范围内的现有固态系统精度高一个数量级。未来使用最先进的组件减小像素尺寸可能会为消费类相机传感器尺寸的阵列产生超过 20 兆像素的分辨率。这一结果为低成本、紧凑型和高性能 3D 成像相机的开发和扩散铺平了道路,这些相机可用于从机器人技术和自主导航到增强现实和医疗保健的应用。

更新日期:2021-02-10
down
wechat
bug