当前位置: X-MOL 学术Environ. Sci. Pollut. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid multifunctional core/shell g-C 3 N 4 @TiO 2 heterojunction nano-catalytic for photodegradation of organic dye and pharmaceutical compounds
Environmental Science and Pollution Research Pub Date : 2021-02-10 , DOI: 10.1007/s11356-021-12680-9
Mai S A Hussien 1, 2 , Ibrahim S Yahia 3, 4, 5
Affiliation  

The pyrolysis of melamine was an effective one-pot method for preparing a nanostructured multifunctional photocatalytic based on core/shell g-C3N4@TiO2 heterojunction. Various techniques entirely characterized these materials: X-ray diffraction (XRD) proved to enhance the as-prepared materials’ crystallinity through the variation of dislocation, strain, and crystallite size with TiO2 loading. The stacked layered/sheet-like with a smooth surface of the as-prepared samples have been shown via scanning electron microscopy (SEM). Diffuse reflectance spectroscopy (DRS) showed an apparent decrease in the energy bandgap for these nanocomposites with TiO2 loading. All the prepared materials were subjected to visible photocatalytic applications under the same conditions. The dye model (Methylene Blue, MB), and antibiotic model (Amoxicillin, AMO), was photodegraded using the as-prepared nanocomposites under visible light irradiation. In the recombination reduction among TiO2 and g-C3N4 interfaces, g-C3N4 has been effectively utilized as a matrix. Our findings proved that g-C3N4@TiO2 photocatalysts exhibited superior photocatalytic performance. CNT-5 of 2.58 eV bandgap had a higher activity of 99.7 in 50 min for MB and 100% in 20 min for AMO than the other represented photocatalysts in this work. The migration of photogenerated electrons from a g-C3N4 to TiO2 via heterojunction among them as g-C3N4 (1 0 1) removes the electrons accumulated on (1 0 1) of TiO2, improve the photodegradation efficiency. Therefore, the increase in photocatalytic reaction rates, recycling, and the sample’s photostability can be considered the result of successful interactions among the TiO2 and g-C3N4 systems. The suggested photodegradation mechanism of MB and AMO was discussed in detail and compared with previously reported work. Therefore, the photodegradation rate of MB and AMO via CNT-5 composite is 6 and 3 times, respectively, higher than that of g-C3N4 under simulated solar irradiation. This research creates a new perspective on the production of nanocomposite materials in the area of treatment of pharmaceutical and dye contaminants.



中文翻译:

杂化多功能核/壳gC 3 N 4 @TiO 2异质结纳米催化剂对有机染料和药物化合物的光降解

三聚氰胺的热解是制备基于核/壳gC 3 N 4 @TiO 2异质结的纳米结构多功能光催化的一种有效的一锅法。各种技术完全表征了这些材料:X射线衍射(XRD)被证明可以通过随TiO 2负载而变化的位错,应变和微晶尺寸来增强所制备材料的结晶度。通过扫描电子显微镜(SEM)显示出所制备样品具有光滑表面的堆叠的层状/片状。漫反射光谱法(DRS)显示这些TiO 2纳米复合材料的能带隙明显降低加载中。在相同条件下,将所有制备的材料进行可见光催化应用。使用制备的纳米复合材料在可见光照射下将染料模型(亚甲基蓝,MB)和抗生素模型(阿莫西林,AMO)光降解。在TiO 2和gC 3 N 4界面之间的复合还原中,gC 3 N 4被有效地用作基质。我们的发现证明了gC 3 N 4 @TiO 2光催化剂表现出优异的光催化性能。具有2.58 eV带隙的CNT-5在50分钟内的MB活性和在20分钟内对AMO的活性均比其他代表的光催化剂高。光生电子通过gC 3 N 4(1 0 1)通过异质结从gC 3 N 4迁移到TiO 2,除去了在TiO 2(1 0 1)上积累的电子,提高了光降解效率。因此,可以认为光催化反应速率,再循环和样品光稳定性的提高是TiO 2和gC 3 N 4成功相互作用的结果。系统。建议的MB和AMO的光降解机理进行了详细讨论,并与先前报道的工作进行了比较。因此,在模拟太阳辐射下,MB和AMO通过CNT-5复合材料的光降解速率分别是gC 3 N 4的6倍和3倍。这项研究为药物和染料污染物处理领域中的纳米复合材料的生产提供了新的视角。

更新日期:2021-02-10
down
wechat
bug