当前位置: X-MOL 学术Tribol. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An approach for predicting failure mechanism in rough surface rolling contact fatigue
Tribology International ( IF 6.1 ) Pub Date : 2021-02-09 , DOI: 10.1016/j.triboint.2021.106923
Steven J. Lorenz , Farshid Sadeghi , Hitesh K. Trivedi , Lewis Rosado , Mathew S. Kirsch , Chinpei Wang

A finite element model was developed to investigate the influence of near surface orthogonal shear stress (OSS) on the competitive failure mechanism between surface originated pitting (SOP) and subsurface originated spalling (SOS), which is intrinsic to rolling contact fatigue (RCF). Surface roughness in heavily loaded non-conformal contacts causes competition between SOS and SOP. In this investigation, tribo-surface roughness has been represented as sinusoidal waveform based on surface measurements of rolling element bearings. These measurements outlined the range of roughness frequency and amplitude. The effects of these surfaces on the contact were investigated and the resulting pressure distributions were used in a finite element model in order to quantify the effects of pressure distribution on near surface orthogonal shear stress concentration. The resulting pressure distributions obtained from rough surfaces were also used in a continuum damage mechanics finite element model (CDM-FEM). The results indicate that a contact with a low frequency surface roughness (pressure distribution) is more susceptible to surface failure, whereas the contact with high frequency surface roughness frequency will resist surface failure. To quantify surface originated failure for a given surface roughness, the probability of surface failure parameter (πsf), which is defined as the ratio of contacts exhibiting SOP characteristics to the total tested is proposed. The near surface stress analysis and failure mechanism results were used to establish a relation between the near surface OSS concentration and πsf. This relation is described by a 2-parameter Weibull cumulative distribution function (CDF). The results indicate that roughness frequency and half contact width are the main parameters controlling the probability of surface failure.



中文翻译:

粗糙表面滚动接触疲劳失效机理的预测方法

建立了一个有限元模型来研究近表面正交剪应力(OSS)对表面起源的点蚀(SOP)和次表面起源的剥落(SOS)之间的竞争破坏机理的影响,这是滚动接触疲劳(RCF)固有的。重载非保形触点中的表面粗糙度会导致SOS和SOP之间的竞争。在这项研究中,基于滚动轴承的表面测量,摩擦表面粗糙度已表示为正弦波形。这些测量概述了粗糙度频率和幅度的范围。研究了这些表面对接触的影响,并将所得压力分布用于有限元模型中,以便量化压力分布对近表面正交剪切应力集中的影响。从粗糙表面获得的压力分布也用于连续损伤力学有限元模型(CDM-FEM)。结果表明,具有低频表面粗糙度(压力分布)的接触更容易发生表面破坏,而具有高频表面粗糙度频率的接触会抵抗表面破坏。为了量化给定表面粗糙度下表面起源的破坏,表面破坏的概率参数为 从粗糙表面获得的压力分布也用于连续损伤力学有限元模型(CDM-FEM)。结果表明,具有低频表面粗糙度(压力分布)的接触更容易发生表面破坏,而具有高频表面粗糙度频率的接触会抵抗表面破坏。为了量化给定表面粗糙度下表面起源的破坏,表面破坏的概率参数为 从粗糙表面获得的压力分布也用于连续损伤力学有限元模型(CDM-FEM)。结果表明,具有低频表面粗糙度(压力分布)的接触更容易发生表面破坏,而具有高频表面粗糙度频率的接触会抵抗表面破坏。为了量化给定表面粗糙度下表面起源的破坏,表面破坏的概率参数为πsF),即定义为具有SOP特性的触点与测试总数之比。利用近地表应力分析和破坏机理结果建立了近地表OSS浓度与应力的关系。πsF。此关系由2参数Weibull累积分布函数(CDF)描述。结果表明,粗糙度频率和半接触宽度是控制表面失效概率的主要参数。

更新日期:2021-02-15
down
wechat
bug