当前位置: X-MOL 学术J. Power Sources › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coupling of nanoconfinement with metallic catalysis in supported NaAlH4 for low-temperature hydrogen storage
Journal of Power Sources ( IF 8.1 ) Pub Date : 2021-02-09 , DOI: 10.1016/j.jpowsour.2021.229611
Z. Li , J.Z. Yu , Y. Zhang , D.M. Liu , C.Y. Wang , T.Z. Si , Y.T. Li , Q.A. Zhang

Realizing of near room-temperature hydrogen storage in complex hydrides is the key challenge for its practical application. Here, we demonstrate a synergy strategy of confinement and metallic catalysis to enable NaAlH4 desorption close to 100 °C for the first time. As a platform for exerting the synergy effect, the Raney Ni with pore size of ~3 nm is prepared by alkali-etching and then the NaAlH4 is loaded into it via wet impregnation (denoted as NaAlH4/Raney Ni). The hydrogen desorption of NaAlH4/Raney Ni (1:4 in mass ratio) shows one step feature that starts at around 85 °C and completes at approximately 260 °C with an apparent activation energy of as low as ~20 kJ mol−1. Moreover, the dehydrogenated products of NaH + Al can readily regenerate back to NaAlH4 at 150 °C, 7 MPa H2 pressure. More importantly, the absorbed hydrogen can release again at temperature as low as 70 °C upon second dehydrogenation. These remarkable enhancements should be ascribed to both shorter diffusion routes by confining in nanoporous supports and more catalytic sites of metallic Ni, which provides an effective route to improve the hydrogen storage properties of complex hydrides by nanoporous metal supports.



中文翻译:

负载型NaAlH 4中纳米约束与金属催化的耦合,用于低温储氢

在复杂氢化物中实现接近室温的氢存储是其实际应用的关键挑战。在这里,我们展示了一种约束和金属催化的协同策略,首次使NaAlH 4解吸接近100°C。作为发挥协同作用的平台,通过碱蚀刻制备孔径为〜3 nm的阮内镍,然后通过湿法浸渍将NaAlH 4加载到其中(表示为NaAlH 4 /阮内Ni)。NaAlH 4 /阮内镍的氢解吸(质量比为1:4)表现出一个阶梯特征,该特征从大约85°C开始并在大约260°C完成,表观活化能低至〜20 kJ mol -1。此外,NaH + Al的脱氢产物可以在150°C,7 MPa H 2的压力下容易地再生回NaAlH 4。更重要的是,第二次脱氢后,被吸收的氢可以在低至70°C的温度下再次释放。这些显着的增强应归因于通过限制在纳米孔载体中的较短扩散路径和金属Ni的更多催化位点,这提供了一种有效的途径来改善纳米孔金属载体对复合氢化物的储氢性能。

更新日期:2021-02-09
down
wechat
bug