当前位置: X-MOL 学术Astron. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A 3D radiative transfer framework: XII. Many-core, vector and GPU methods
Astronomy and Computing ( IF 1.9 ) Pub Date : 2021-02-09 , DOI: 10.1016/j.ascom.2021.100450
P.H. Hauschildt , E. Baron

3D detailed radiative transfer is computationally taxing, since the solution of the radiative transfer equation involves traversing the six dimensional phase space of the 3D domain. With modern supercomputers the hardware available for wallclock speedup is rapidly changing, mostly in response to requirements to minimize the cost of electrical power. Given the variety of modern computing architectures, we aim to develop and adapt algorithms for different computing architectures to improve performance on a wide variety of platforms. We implemented the main time consuming kernels for solving 3D radiative transfer problems for vastly different computing architectures using MPI, OpenMP, OpenACC and vector algorithms. Adapted algorithms lead to massively improved speed for all architectures, making extremely large model calculations easily feasible. These calculations would have previously been considered impossible or prohibitively expensive. Efficient use of modern computing devices is entirely feasible, but unfortunately requires the implementation of specialized algorithms for them.



中文翻译:

3D辐射传输框架:XII。多核,向量和GPU方法

3D详细的辐射传递在计算上很费力,因为辐射传递方程的解涉及遍历3D域的六维相空间。随着现代超级计算机的发展,可用于壁钟加速的硬件正在迅速变化,这主要是为了满足使电力成本最小化的要求。鉴于现代计算体系结构的多样性,我们旨在开发和调整适用于不同计算体系结构的算法,以提高各种平台上的性能。我们使用MPI,OpenMP,OpenACC和矢量算法实现了主要的耗时内核,以解决极大不同的计算体系结构的3D辐射传递问题。自适应算法可大大提高所有体系结构的速度,从而使大型模型的计算变得容易可行。这些计算以前曾被认为是不可能的或过高的。有效使用现代计算设备是完全可行的,但不幸的是,需要为它们使用专门的算法。

更新日期:2021-02-18
down
wechat
bug