当前位置: X-MOL 学术Biocatal. Biotransform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biochemical and biophysical characterisation of a small purified lipase from Rhizopus oryzae ZAC3
Biocatalysis and Biotransformation ( IF 1.4 ) Pub Date : 2021-02-08
Zainab A. Ayinla, Adedeji N. Ademakinwa, Richard A. Gross, Femi K. Agboola

Abstract

The characteristics of a purified lipase from Rhizopus oryzae ZAC3 (RoL-ZAC3) were investigated. RoL-ZAC3, a 15.8 kDa protein, which was optimally active at pH 8 and 55 °C had a half-life of 126 min at 60 °C. The kinetic parameters using p-nitrophenylbutyrate as substrate were 0.19 ± 0.02 mM, 126 ± 5.6 U/ml and 122 s−1 for Km , V max and k cat respectively. RoL-ZAC3 showed stability in methanol and isopropanol with Na+ enhancing the activity. p-nitrophenyloleate and castor oil were the best preferred substrates among the p-nitrophenyl esters and vegetable oils tested respectively. About 43% residual activity was observed after incubation for 30 min at 75 °C. Circular dichroism thermal scan showed that the lipase displayed intense negative ellipticities even at high temperature. Perturbation of the tertiary structure with increasing temperature caused the exposure of hydrophobic side chains to the aqueous environment as revealed by tryptophan fluorescence, with a tTm of 50 °C. Differential scanning calorimetry analysis showed melting temperature and calorimetric enthalpy of 55.5 °C and 444 kJ/mol respectively. Dynamic light scattering analysis indicated that the lipase was prone to aggregation upon unfolding at high temperature. It can be concluded that RoL-ZAC3 possesses promising potential for numerous biotechnological applications.

更新日期:2021-02-08
down
wechat
bug