当前位置: X-MOL 学术Energy Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ZnO/PDMS nanocomposite generator: Interphase influence in the nanocomposite electro-mechanical properties and output voltage
Energy Reports ( IF 4.7 ) Pub Date : 2021-02-08 , DOI: 10.1016/j.egyr.2021.01.086
Carlos Andres Perez-Lopez , Jaime Andres Perez-Taborda , Cilene Labre , Juan Manuel Marmolejo-Tejada , Andres Jaramillo-Botero , Alba Avila

Nanocomposite generators convert mechanical energy into electrical energy and are attractive low-power solutions for self-powered sensors and wearables. Homogeneous dispersion, high concentration, and orientation of the embedded filler strategies have been assumed to maximize the voltage output in nanocomposite generators. This work contrast these assumptions by studying the dominance of the interphase in low filler concentrations (¡10%) and random dispersions in a ZnO/PDMS nanocomposite generator with high peak-to-peak voltage generation capabilities (150V). The interphase in the nanocomposite was studied by the analysis of the random dispersion of the nanocomposite through the estimation of the effective volume fraction () which allowed us to identify three levels of interaction: individual interphases, interacting interphases, and overlapping between NPs and interphases. The interacting interphase is responsible here for the high generated voltage. In addition, the impact of the interphase was studied by applying lumped element (LE) and interphasial power-law (IPL) models that capture the measured voltages and the electromechanical film properties. The obtained results justify that engineering of interphases could be a design strategy for high voltage generation.

中文翻译:

ZnO/PDMS纳米复合材料发电机:纳米复合材料机电性能和输出电压的相间影响

纳米复合材料发电机将机械能转化为电能,对于自供电传感器和可穿戴设备来说是极具吸引力的低功耗解决方案。均匀分散、高浓度和嵌入填料策略的定向被认为可以最大化纳米复合材料发电机的电压输出。这项工作通过研究具有高峰峰值电压生成能力 (150V) 的 ZnO/PDMS 纳米复合材料发生器中低填料浓度 (¡10%) 和随机分散中界面的主导地位来对比这些假设。通过估计有效体积分数 () 来分析纳米复合材料的随机分散,从而研究了纳米复合材料中的界面,这使我们能够识别三个级别的相互作用:单独的界面、相互作用的界面以及纳米粒子和界面之间的重叠。相互作用的相间是产生高电压的原因。此外,还通过应用集总元件 (LE) 和相间幂律 (IPL) 模型研究了相间的影响,这些模型捕获了测量的电压和机电薄膜特性。获得的结果证明相间工程可以成为高压发电的设计策略。
更新日期:2021-02-08
down
wechat
bug