当前位置: X-MOL 学术Arab. J. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influencing Factors of the Wellbore Cleaning Efficiency in Extended Reach Wells Based on Seawater Drilling Fluid
Arabian Journal for Science and Engineering ( IF 2.6 ) Pub Date : 2021-02-08 , DOI: 10.1007/s13369-021-05386-0
Penghao Lin , Wenlong Zheng , Xiaoming Wu

Under the construction of extended reach wells, cutting beds are very likely to form due to inadequate wellbore cleaning. The inorganic salts in seawater aggravate this problem by affecting the rheology of drilling fluids. By developing a cutting transport dynamic simulation platform, the reasons and laws of cutting beds formation, damage and removal were revealed. The results demonstrated that cutting beds are most likely to form at well inclination angles ranging from 30° to 45°. The larger the cuttings are, the higher the possibility of cutting bed formation. Properly increasing the viscosity and flow rate may reduce the formation probability of cutting beds. Furthermore, the novel concept of the critical flow velocity window for cutting bed migration was proposed. The velocity window narrowed with increasing cutting particle size, well inclination angle, ultimate high shear viscosity and Carson dynamic shear force. The efficiency of cutting bed removal by the drilling fluid was positively correlated with the well inclination angle, Carson dynamic shear force and ultimate high shear viscosity and negatively correlated with the cutting particle size. The migration mode varied with the particle size. Small-particle cutting beds were damaged by the drilling fluid into many blocks, which generated several failure points, and all the blocks were then separately transported. However, the migration mode of large-particle cutting beds was surface migration, which implies that the cuttings on the surface were always propelled by the drilling fluid first. Migration mode variation could be the likely reason for the change in the velocity window.



中文翻译:

基于海水钻井液的扩宽井井眼清洗效率的影响因素

在扩展井的建造中,由于井眼清洁不充分,很可能形成切割床。海水中的无机盐会影响钻井液的流变性,从而加剧该问题。通过开发切割运输动态仿真平台,揭示了切割床形成,损坏和清除的原因和规律。结果表明,切削床最有可能以30°至45°的倾斜角度形成。切屑越大,切割床形成的可能性越高。适当增加粘度和流速可降低切割床的形成几率。此外,提出了用于切割床迁移的临界流速窗口的新概念。速度窗口随着切削粒度的增加而变窄,井斜角,极限高剪切粘度和卡森动态剪切力。钻井液去除切削床的效率与井倾角,卡森动态剪切力和极限高剪切粘度成正相关,与切削粒度成负相关。迁移模式随粒度而变化。小颗粒切割床被钻井液损坏成许多块,这产生了多个破坏点,然后分别运输所有块。然而,大颗粒切割床的运移方式是表面运移,这意味着表面上的钻屑总是首先被钻井液推动。迁移模式的变化可能是速度窗口变化的可能原因。极高的剪切粘度和卡森动态剪切力。钻井液去除切削床的效率与井倾角,卡森动态剪切力和极限高剪切粘度成正相关,与切削粒度成负相关。迁移模式随粒度而变化。小颗粒切割床被钻井液损坏成许多块,这产生了多个破坏点,然后分别运输所有块。然而,大颗粒切割床的运移方式是表面运移,这意味着表面上的钻屑总是首先被钻井液推动。迁移模式的变化可能是速度窗口变化的可能原因。极高的剪切粘度和卡森动态剪切力。钻井液去除切削床的效率与井倾角,卡森动态剪切力和极限高剪切粘度成正相关,与切削粒度成负相关。迁移模式随粒度而变化。小颗粒切割床被钻井液损坏成许多块,这产生了多个破坏点,然后分别运输所有块。然而,大颗粒切割床的运移方式是表面运移,这意味着表面上的钻屑总是首先被钻井液推动。迁移模式的变化可能是速度窗口变化的可能原因。钻井液去除切削床的效率与井倾角,卡森动态剪切力和极限高剪切粘度成正相关,与切削粒度成负相关。迁移模式随粒度而变化。小颗粒切割床被钻井液损坏成许多块,这产生了多个破坏点,然后分别运输所有块。然而,大颗粒切割床的运移方式是表面运移,这意味着表面上的钻屑总是首先被钻井液推动。迁移模式的变化可能是速度窗口变化的可能原因。钻井液去除切削床的效率与井倾角,卡森动态剪切力和极限高剪切粘度成正相关,与切削粒度成负相关。迁移模式随粒度而变化。小颗粒切割床被钻井液损坏成许多块,这产生了多个破坏点,然后分别运输所有块。然而,大颗粒切割床的运移方式是表面运移,这意味着表面上的钻屑总是首先被钻井液推动。迁移模式的变化可能是速度窗口变化的可能原因。卡森动态剪切力和极限高剪切粘度与切削粒度呈负相关。迁移模式随粒度而变化。小颗粒切割床被钻井液损坏成许多块,这产生了多个破坏点,然后分别运输所有块。然而,大颗粒切割床的运移方式是表面运移,这意味着表面上的钻屑总是首先被钻井液推动。迁移模式的变化可能是速度窗口变化的可能原因。卡森动态剪切力和极限高剪切粘度与切削粒度呈负相关。迁移模式随粒度而变化。小颗粒切割床被钻井液损坏成许多块,这产生了多个破坏点,然后分别运输所有块。然而,大颗粒切割床的运移方式是表面运移,这意味着表面上的钻屑总是首先被钻井液推动。迁移模式的变化可能是速度窗口变化的可能原因。这会产生多个故障点,然后分别运输所有模块。然而,大颗粒切割床的运移方式是表面运移,这意味着表面上的钻屑总是首先被钻井液推动。迁移模式的变化可能是速度窗口变化的可能原因。这会产生多个故障点,然后分别运输所有模块。然而,大颗粒切割床的运移方式是表面运移,这意味着表面上的钻屑总是首先被钻井液推动。迁移模式的变化可能是速度窗口变化的可能原因。

更新日期:2021-02-08
down
wechat
bug