当前位置: X-MOL 学术Energ. Mater. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced shockwave-absorption ability of the molecular disorder rooting for the reactivity elevation of energetic materials
Energetic Materials Frontiers ( IF 3.3 ) Pub Date : 2020-10-10 , DOI: 10.1016/j.enmf.2020.09.003
Kai Zhong , Ying Xiong , Jian Liu , Chaoyang Zhang

It is universally believed that the molecular disorder possesses a high reactivity compared to the molecular order and can start the ignition of shocked energetic materials (EMs) from defects, interfaces, and surfaces. However, the origin of this high reactivity is still not fully understood. To this end, this study performs a series of simulations of reactive molecular dynamics on a solid model and a liquid model of 1,3,5-trinitro-1,3,5-triazinane (RDX), which are the representatives of ordered and disordered energetic molecules with ReaxFF potentials, respectively. A total of five heating conditions and three shock conditions are considered. The high reactivity of the molecular disorder in liquid RDX is remarkably discriminated under shock, with the discrimination degree depending on shock strength, followed by adiabatic heating. This high reactivity is attributed to the increase in internal energy induced by stronger shock, which is originated from a high shockwave-absorption ability of the liquid RDX with amorphous structures compared to the solid RDX with ordered structures. Therefore, the high shockwave-absorption ability is just the root of the high reactivity of molecular disorder in defected EMs and usually starts the ignition. Thereby, for the first time, the high reactivity of molecular disorder in shocked EMs can be well understood through its high shockwave-absorption ability.



中文翻译:

分子紊乱产生​​的冲击波吸收能力增强,可提高含能材料的反应活性

普遍认为,与分子顺序相比,分子疾病具有较高的反应性,并且可以从缺陷,界面和表面开始点燃冲击的高能材料(EM)。但是,这种高反应性的起因仍未完全清楚。为此,本研究在1,3,5-三硝基-1,3,5-三嗪烷(RDX)的固体模型和液体模型上进行了一系列反应性分子动力学模拟,这是有序和有序的代表。具有ReaxFF电位的无序能量分子。总共考虑了五个加热条件和三个冲击条件。液体RDX中分子无序的高反应性在冲击下被明显区分,区分程度取决于冲击强度,然后进行绝热加热。这种高反应性归因于由更强的冲击所引起的内部能量的增加,这是由于具有无定形结构的液体RDX与具有有序结构的固体RDX相比具有较高的冲击波吸收能力。因此,高的冲击波吸收能力只是缺陷的EM中分子无序性高反应性的根源,通常会引起点火。因此,第一次,通过其高的冲击波吸收能力可以很好地理解震惊的EM中分子无序性的高反应性。高冲击波吸收能力只是缺陷的EM中分子无序性高反应性的根源,通常会引起点火。因此,第一次,通过其高的冲击波吸收能力可以很好地理解震惊的EM中分子无序性的高反应性。高冲击波吸收能力只是缺陷的EM中分子无序性高反应性的根源,通常会引起点火。因此,第一次,通过其高的冲击波吸收能力可以很好地理解震惊的EM中分子无序性的高反应性。

更新日期:2020-10-10
down
wechat
bug