当前位置: X-MOL 学术Resour. Conserv. Recycl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
China's energy-related carbon emissions projections for the shared socioeconomic pathways
Resources, Conservation and Recycling ( IF 11.2 ) Pub Date : 2021-02-06 , DOI: 10.1016/j.resconrec.2021.105456
Fan Zhang , Xiangzheng Deng , Li Xie , Ning Xu

The carbon emissions from China's energy consumption are substantially increasing. In this context, it is necessary to predict the long-term dynamics of China's carbon emissions. Existing research has investigated future scenarios for China's carbon emissions, but there is still no consensus on such issues as the amount of emissions at peak points and the future carbon emissions path over a longer period. This paper aimed to explore the dynamics of China's carbon emissions under five Shared Socioeconomic Pathways scenarios (SSP1–SSP5), and to provide further evidences for the comprehensive analysis and prediction of climate change. Before forecasting the socioeconomic data, an in-sample and out-of-sample approach was used to evaluate the prediction accuracy of the feasible generalized least squares (FGLS) model. By using historical data from 30 provinces, the relationship among population, educational attainment, per capita GDP, and carbon emissions was investigated. Finally, carbon emissions from 2018 to 2100 were predicted based on the settings of different SSP scenarios and model parameters. The results showed that the peak value was 2030 for SSP1 and SSP5, 2029 for SSP2 and SSP4, and 2028 for SSP3. China will reach the largest cumulative carbon emissions amounting to 814.84 billion tons under the SSP5 scenario. Under all the SSP scenarios, the western region was always the first to reach its peak value, followed by the central region and then the eastern coastal zone. From 2018 to 2100, Jiangsu, Shandong, Guangdong, Zhejiang, Henan, Inner Mongolia, Xinjiang, Hebei, Hubei and Sichuan will contribute significantly to total carbon emissions under different SSP scenarios. All the results and conclusions would provide significant contributions for carbon reduction and climate change mitigation.

更新日期:2021-02-07
down
wechat
bug