当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The effects of external force and electrical field on the agglomeration of Fe3O4 nanoparticles in electroosmotic flows in microchannels using molecular dynamics simulation
International Communications in Heat and Mass Transfer ( IF 7 ) Pub Date : 2021-02-07 , DOI: 10.1016/j.icheatmasstransfer.2021.105182
Reza Balali Dehkordi , Davood Toghraie , Mohammad Hashemian , Farshid Aghadavoudi , Mohammad Akbari

Recent progress in nanoparticle construction can be seen as a breakthrough in increasing heat transfer methods. The small size of particles and low volume fraction of particles leads to solving agglomeration and pressure drop problems and reduce the cost of storing and transporting nanofluids. Molecular dynamics simulation is one of the essential branches of computational physics that can predict various structures' atomic behavior. In this study, the effects of external electrostatic force and external electrical field on the density, velocity, temperature of atomic structures, and agglomeration of Fe3O4 nanoparticles in a copper microchannel are investigated. The results of the physical properties of this structure are estimated using molecular dynamics simulation and LAMMPS software. The results show that with increasing the applied external electrostatic force the maximum velocity is converged to 0.0071 Å /ps. Also, adding an external electrical field to the simulated nanofluid, the maximum values of density, velocity, and temperature are estimated to 1.32 g/cm3, 0.0078 Å /ps, and 345 K, respectively. The external electrical field has a significant and essential role in the agglomeration process in atomic structures. Finally, it is observed that by increasing the external electrical field, the time required for the agglomeration process increases to 2.26 ns.



中文翻译:

分子动力学模拟研究外力和电场对微通道电渗流中Fe 3 O 4纳米粒子团聚的影响

纳米颗粒构造的最新进展可以看作是增加传热方法的突破。颗粒的小尺寸和颗粒的低体积分数导致解决附聚和压降问题,并降低了储存和运输纳米流体的成本。分子动力学模拟是计算物理学的重要分支之一,可以预测各种结构的原子行为。在这项研究中,外部静电力和外部电场对Fe 3 O 4的密度,速度,原子结构的温度和团聚的影响研究了铜微通道中的纳米颗粒。使用分子动力学模拟和LAMMPS软件估计该结构的物理性质的结果。结果表明,随着施加的外部静电力的增加,最大速度收敛到0.0071Å/ ps。此外,增加一个外部电场的模拟纳米流体,密度,速度和温度的最大值估计〜1.32克/厘米3分别0.0078埃/ PS,和345 K,。外部电场在原子结构的团聚过程中具有重要作用。最后,观察到通过增加外部电场,团聚过程所需的时间增加到2.26 ns。

更新日期:2021-02-08
down
wechat
bug