当前位置: X-MOL 学术Acta Math. Hungar. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On a hybrid version of the Vinogradov mean value theorem
Acta Mathematica Hungarica ( IF 0.6 ) Pub Date : 2021-02-06 , DOI: 10.1007/s10474-020-01111-9
C. Chen , I. E. Shparlinski

Given a family \(\varphi = (\varphi_1, \ldots, \varphi_d)\in \mathbb{Z}[T]^d\) of d distinct nonconstant polynomials, a positive integer \(k\le d\) and a real positive parameter \(\rho\), we consider the mean value

$$M_{k, \rho} (\varphi, N) = \int_{{\rm x} \in [0,1]^k} \sup_{{\rm y} \in [0,1]^{d-k}} | S_{\varphi}({\rm x}, {\rm y}; N) |^\rho \,d{\rm x} $$

of exponential sums

$$S_{\varphi}({\rm x}, {\rm y}; N) = \sum_{n=1}^{N} \exp\biggl(2 \pi i\biggl(\sum_{j=1}^k x_j \varphi_j(n)+ \sum_{j=1}^{d-k}y_j\varphi_{k+j}(n)\biggr)\biggr), $$

where \({\rm x} = (x_1, \ldots, x_k)\) and \({\rm y} =(y_1, \ldots, y_{d-k})\). The case of polynomials \(\varphi_i(T) = T^i, i =1, \ldots, d\) and \(k=d\) corresponds to the classical Vinaogradov mean value theorem.

Here motivated by recent works of Wooley [14] and the authors [9] on bounds on \({\rm sup}_{{\rm y} \in [0,1]^{d-k}} | S_{\varphi}({\rm x}, {\rm y}; N) |\) for almost all \({\rm x} \in [0,1]^k\), we obtain nontrivial bounds on \(M_{k, \rho} (\varphi, N)\).



中文翻译:

在维诺格拉多夫均值定理的混合版本上

给定d个不同的非恒定多项式的族\(\ varphi =(\ varphi_1,\ ldots,\ varphi_d)\在\ mathbb {Z} [T] ^ d \)中,一个正整数\(k \ le d \)和一个真实的正参数\(\ rho \),我们考虑平均值

$$ M_ {k,\ rho}(\ varphi,N)= \ int _ {{\ rm x} \ in [0,1] ^ k} \ sup _ {{\ rm y} \ in [0,1] ^ {dk}} | S _ {\ varphi}({\ rm x},{\ rm y}; N)| ^ \ rho \,d {\ rm x} $$

指数和

$$ S _ {\ varphi}({\ rm x},{\ rm y}; N)= \ sum_ {n = 1} ^ {N} \ exp \ biggl(2 \ pi i \ biggl(\ sum_ {j = 1} ^ k x_j \ varphi_j(n)+ \ sum_ {j = 1} ^ {dk} y_j \ varphi_ {k + j}(n)\ biggr)\ biggr),$$

其中\({\ rm x} =(x_1,\ ldots,x_k)\)\({\ rm y} = {y_1,\ ldots,y_ {dk})\)。多项式\(\ varphi_i(T)= T ^ i,i = 1,\ ldots,d \)\(k = d \)的情况对应于经典Vinaogradov平均值定理

这里是受Wooley [14]和作者[9]在\({\ rm sup} _ {{\ rm y} \ in [0,1] ^ {dk}} | S _ {\ varphi \ }({{rm x},{\ rm y}; N)| \)几乎所有\({[rm x} \ in [0,1] ^ k \)中,我们获得\(M_ { k,\ rho}(\ varphi,N)\)

更新日期:2021-02-07
down
wechat
bug