当前位置: X-MOL 学术Opt. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Implantable wirelessly powered optoelectronic device for optogenetics
Optical Engineering ( IF 1.1 ) Pub Date : 2021-02-01 , DOI: 10.1117/1.oe.60.2.027101
Yin Sha 1 , Chen Lin 2 , Hongyun Xie 1 , Xiaoyan Yi 2 , Teng Zhan 2 , Xiancheng Liu 1 , Yang Xiang 1 , Wanrong Zhang 1
Affiliation  

In vivo optogenetics provide special and powerful capabilities in regulation of neurons, research of neural circuits and even in treatment of brain diseases. However, conventional hardware for such studies tethers the experimental animals to remote light sources, power sources, or other functional modules, which imposes considerable physical constrains on natural behaviors and limits the range of the experiment. To enable flexible and convenient optogenetic manipulation of neural circuit with finite disruption of animal behavior, a wirelessly powered optoelectronic device, composing mainly of a radio frequency (RF) energy harvester and a high-performance GaN-based light-emitting diode (LED), is demonstrated and can be used to construct an implantable optrode for optogenetics. The wireless RF power signal is collected through an antenna and a two-stage voltage doubling rectifier circuit, and finally converted into high-amplitude DC voltage. Provided with 25-dBm RF power with a distance of 0.2 m, the RF energy harvesting and processing circuit can output a stable 2.81 V DC voltage and drive the designed GaN-based LED to work normally. After being successfully lit, the emission peak wavelength of the LED locates 455 nm and the output optical power density reaches 214.9 mW / mm2, which is fully capable of activating light-sensitive ion channel channelrhodopsin-2. The total area of the device is 3 mm × 3.2 mm, which is suitable for subdermal implantation.

中文翻译:

用于光遗传学的植入式无线光电器件

体内光遗传学在调节神经元,研究神经回路甚至治疗脑部疾病方面提供了特殊而强大的功能。但是,用于此类研究的常规硬件将实验动物束缚在远程光源,电源或其他功能模块上,这对自然行为施加了相当大的物理约束,并限制了实验的范围。为了能够灵活,方便地对神经回路进行光遗传学控制,从而有限地破坏动物的行为,主要由射频(RF)能量收集器和高性能GaN基发光二极管(LED)组成的无线光电装置,证明了这一点,可以用于构建光遗传学的可植入光极。无线射频功率信号通过天线和两级倍压整流电路收集,最终转换为高振幅直流电压。射频能量采集和处理电路提供0.2距离的25-dBm射频功率,可以输出稳定的2.81 V直流电压,并驱动设计的GaN基LED正常工作。成功点亮后,LED的发射峰值波长位于455 nm,输出光功率密度达到214.9 mW / mm2,完全能够激活光敏离子通道通道视紫红质2。该设备的总面积为3 mm×3.2 mm,适合皮下植入。RF能量采集和处理电路可以输出稳定的2.81 V DC电压,并驱动设计的GaN基LED正常工作。成功点亮后,LED的发射峰值波长位于455 nm,输出光功率密度达到214.9 mW / mm2,完全能够激活光敏离子通道通道视紫红质2。该设备的总面积为3 mm×3.2 mm,适合皮下植入。RF能量收集和处理电路可以输出稳定的2.81 V DC电压,并驱动设计的GaN基LED正常工作。成功点亮后,LED的发射峰值波长位于455 nm,输出光功率密度达到214.9 mW / mm2,完全能够激活光敏离子通道通道视紫红质2。该设备的总面积为3 mm×3.2 mm,适合皮下植入。
更新日期:2021-02-05
down
wechat
bug