当前位置: X-MOL 学术ACS ES&T Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Photocatalytic VOCs Mineralization via Special Ga-O-H Charge Transfer Channel in α-Ga2O3/MgAl-LDH Heterojunction
ACS ES&T Engineering ( IF 7.4 ) Pub Date : 2020-12-29 , DOI: 10.1021/acsestengg.0c00194
Peng Chen 1, 2 , Lvcun Chen 1, 2 , Xing’an Dong 2 , Hong Wang 2 , Jieyuan Li 2 , Ying Zhou 1 , Chao Xue 3 , Yuxin Zhang 4 , Fan Dong 1, 2, 3
Affiliation  

This work demonstrated a strategy of electronic structure regulation of photocatalysts to improve the charge separation and migration efficiency for optimized photocatalytic VOCs mineralization performance. A novel heterojunction of an α-Ga2O3/MgAl-LDH hexagonal system was synthesized and applied for stable photocatalytic toluene degradation. On the basis of DFT calculations and experiment results, the lattice mismatch between α-Ga2O3 and MgAl-LDH was relatively small and a charge transfer of the Ga-O-H channel was created at the interface. The channel would induce the photogenerated electrons in α-Ga2O3 and quickly transfer into MgAl-LDH, thus facilitating the charge carriers transfer and enhancing the activation of oxygen/water molecules through the electronic interaction between the catalyst surface and the adsorbent. Then, highly separated electrons and holes will, respectively, react with activated oxygen and water molecules to generate abundant reactive oxygen species. Therefore, the α-Ga2O3/MgAl-LDH hexagonal system heterojunction could achieve an excellent activity and stability of photocatalytic toluene degradation (90.71%) and mineralization (84.0%) in different relative humility, far exceeding that of P25. The atomic interfacial understanding of the heterojunction’s structure will provide a new perspective on the development of efficient photocatalysts for environmental remediation or energy conversion.

中文翻译:

通过特别Ga的OH电荷传输沟道增强光催化的VOC矿化α -镓2 ö 3 /镁铝-LDH异质结

这项工作展示了一种调节光催化剂电子结构的策略,以改善电荷分离和迁移效率,从而优化光催化VOC的矿化性能。α-Ga中一种新颖的异质结2 ö 3 /镁铝-LDH六方晶系合成并申请了稳定的光催化降解甲苯。关于DFT计算和实验的结果,α-嘎之间的晶格失配的基础2 ö 3和镁铝-LDH相对较小和Ga的OH信道的电荷转移是在界面处创建的。信道会引起光生电子在α -镓2 ö 3并迅速转移到MgAl-LDH中,从而通过催化剂表面和吸附剂之间的电子相互作用,促进电荷载流子的转移并增强氧/水分子的活化。然后,高度分离的电子和空穴将分别与活性氧和水分子反应以生成大量的活性氧。因此,α-嘎2 ö 3/ MgAl-LDH六方体系异质结在不同相对相对湿度下均具有优异的光催化甲苯降解(90.71%)和矿化(84.0%)的活性和稳定性,远远超过P25。对异质结结构的原子界面理解将为开发用于环境修复或能量转化的高效光催化剂提供新的视角。
更新日期:2020-12-29
down
wechat
bug