当前位置: X-MOL 学术ACS ES&T Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Situ Exploration of the Sulfidogenic Process at the Water-Sediment Interface in Sewers: Mechanism and Implications
ACS ES&T Engineering ( IF 7.4 ) Pub Date : 2020-12-23 , DOI: 10.1021/acsestengg.0c00163
Zhiqiang Zuo 1 , Zheng Sun 1 , Yizhen Zhang 1 , Moran Wang 1 , Daheng Ren 1 , Siqi Li 1 , Zhiguo Yuan 2 , Yanchen Liu 1 , Xia Huang 1
Affiliation  

Corrosion and odor induced by sulfidogenic processes is a worldwide issue in environmental engineering. This study focuses on a neglected, but critical process, sulfidogenic conversion at the water-sediment interface, to optimize the prediction and control of sulfide in sewers. A novel in situ, high-resolution measurement method based on the diffusive gradients in thin films technique was established for the first time for use in sewer systems. The results showed that, at a critical shear velocity (i.e., ∼0.07 m/s), the key factor dominating sulfidogenic activity in the surface layer of sediment (i.e., ∼1 cm) switched to substrate diffusion resistance at the water-sediment surface. An increase in shear velocity from 0 to ∼0.07 m/s significantly activated the sulfidogenic process in this layer. The spatial variation in the functional microbial community further confirmed the sediment profile of sulfidogenic activity. A sewer model incorporating the substrate diffusion process at the water-sediment interface was developed and verified, which revealed the characteristic response of the diffusive boundary layer thickness at the water-sediment interface to shear velocity. The maximum sulfide production rates (kH2S) under varying water quality and shear velocity conditions were successfully simulated, improving the model’s predictive accuracy in gravity sewers. This study has certain engineering significance for optimizing sulfide prediction and control in sewers.

中文翻译:

下水道水-沉积物界面成矿过程的原位探讨:机理与意义

硫化过程引起的腐蚀和气味是环境工程中的一个全球性问题。这项研究的重点是在水-沉积物界面上被忽略但很关键的硫化物转化,以优化下水道中硫化物的预测和控制。首次建立了一种基于薄膜扩散梯度的原位高分辨率测量方法,用于下水道系统。结果表明,在临界剪切速度(〜0.07 m / s)下,决定沉积物表层(〜1 cm)中成硫活性的关键因素转换为水-沉积物表面的基质扩散阻力。 。剪切速度从0增加到〜0.07 m / s显着激活了该层中的硫化作用过程。功能性微生物群落的空间变化进一步证实了硫化活动的沉积特征。建立并验证了在水-沉积物界面处结合了基质扩散过程的下水道模型,该模型揭示了水-沉积物界面处的扩散边界层厚度对剪切速度的特征响应。最大硫化物产生率(k H 2 S)在变化的水质和剪切速度条件下被成功模拟,从而提高了模型在重力下水道中的预测精度。这项研究对于优化下水道中的硫化物预测和控制具有一定的工程意义。
更新日期:2020-12-23
down
wechat
bug