当前位置: X-MOL 学术J. Neurosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neural Encoding and Representation of Time for Sensorimotor Control and Learning
Journal of Neuroscience ( IF 4.4 ) Pub Date : 2021-02-03 , DOI: 10.1523/jneurosci.1652-20.2020
Ramesh Balasubramaniam 1 , Saskia Haegens 2 , Mehrdad Jazayeri 3 , Hugo Merchant 4 , Dagmar Sternad 5 , Joo-Hyun Song 6
Affiliation  

The ability to perceive and produce movements in the real world with precise timing is critical for survival in animals, including humans. However, research on sensorimotor timing has rarely considered the tight interrelation between perception, action, and cognition. In this review, we present new evidence from behavioral, computational, and neural studies in humans and nonhuman primates, suggesting a pivotal link between sensorimotor control and temporal processing, as well as describing new theoretical frameworks regarding timing in perception and action. We first discuss the link between movement coordination and interval-based timing by addressing how motor training develops accurate spatiotemporal patterns in behavior and influences the perception of temporal intervals. We then discuss how motor expertise results from establishing task-relevant neural manifolds in sensorimotor cortical areas and how the geometry and dynamics of these manifolds help reduce timing variability. We also highlight how neural dynamics in sensorimotor areas are involved in beat-based timing. These lines of research aim to extend our understanding of how timing arises from and contributes to perceptual-motor behaviors in complex environments to seamlessly interact with other cognitive processes.



中文翻译:


感觉运动控制和学习的神经编码和时间表示



在现实世界中以精确的时间感知和产生运动的能力对于包括人类在内的动物的生存至关重要。然而,关于感觉运动时序的研究很少考虑感知、行动和认知之间的紧密相互关系。在这篇综述中,我们提出了来自人类和非人类灵长类动物的行为、计算和神经研究的新证据,表明感觉运动控制和时间处理之间的关键联系,并描述了关于感知和行动时间的新理论框架。我们首先通过讨论运动训练如何发展准确的行为时空模式并影响时间间隔的感知来讨论运动协调和基于间隔的计时之间的联系。然后,我们讨论运动专业知识如何通过在感觉运动皮层区域建立与任务相关的神经流形而产生,以及这些流形的几何形状和动力学如何帮助减少时间变异性。我们还强调了感觉运动区域的神经动力学如何参与基于节拍的计时。这些研究旨在加深我们对复杂环境中感知运动行为的产生和影响的理解,从而与其他认知过程无缝交互。

更新日期:2021-02-03
down
wechat
bug