当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal-hydraulic analysis and irreversibility of the MWCNTs-SiO2/EG-H2O non-Newtonian hybrid nanofluids inside a zigzag micro-channels heat sink
International Communications in Heat and Mass Transfer ( IF 6.4 ) Pub Date : 2021-02-03 , DOI: 10.1016/j.icheatmasstransfer.2021.105158
Abdulwahab A. Alnaqi , Jalal Alsarraf , Abdullah A.A.A. Al-Rashed , Masoud Afrand

This study aims to investigate a micro-heat sink (MHS) with zigzag micro-channels subjected to constant heat flux. The MWCNTs – SiO2/EG – H2O hybrid nanofluids (HNFs) is used to cool the MHS. The HNFs properties of experimental models are used for this study for the conduction heat transfer coefficient and the rheological behavior of the HNFs as a power-law non-Newtonian (PL-nN) model. The present study also investigates the effective parameters on the thermal hydraulic and irreversibility. The effect of HNF velocity (1–2 m/s), the volume concentration of HNF (0–0.5%) and the zigzag height (0 to 10 mm) on the performance metrics are investigated. In addition, the obtained results and various parameters including heat transfer improvement, pressure drop (∆P), and maximum temperature (TMax) of the MHS are investigated in each section. Eventually, the results revealed that increasing the velocity increases the heat dissipation from the MHS. On the other hand, increasing the zigzag length of the channel increases heat transfer from the MHS's surface, and thus, improves heat transfer, which is associated with an increase in the ∆P of the passing fluid. The increase in the concentration of nanoparticles and MWCNTs cause to a considerable increase in viscosity, which dramatically increases the pumping power inside the MHS. Increasing the height of zigzags increases the collision of fluid to the walls of the micro-channels and increases the total entropy generation.



中文翻译:

之字形微通道散热器内部的MWCNTs-SiO 2 / EG-H 2 O非牛顿杂化纳米流体的热工水力分析和不可逆性

这项研究的目的是研究带有曲折微通道的微散热器(MHS),该微通道经受恒定的热通量。MWCNT – SiO 2 / EG – H 2 O杂化纳米流体(HNFs)用于冷却MHS。实验模型的HNFs属性用于本研究中,作为幂律非牛顿(PL-nN)模型的HNFs的导热系数和流变行为。本研究还研究了热工水力和不可逆性的有效参数。研究了HNF速度(1-2 m / s),HNF的体积浓度(0-0.5%)和曲折高度(0至10 mm)对性能指标的影响。此外,获得的结果和包括传热改善,压降(∆ P),并在每个部分中调查MHS的最高温度(T Max)。最终,结果表明增加速度会增加MHS的散热。另一方面,增加通道的之字形长度会增加从MHS表面传出的热量,从而改善传热,这与通过流体的∆ P的增加有关。纳米颗粒和MWCNT浓度的增加导致粘度显着增加,这极大地增加了MHS内部的泵送功率。之字形的高度增加会增加流体与微通道壁的碰撞,并增加总熵的产生。

更新日期:2021-02-03
down
wechat
bug