当前位置: X-MOL 学术Ecol. Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Long-term deep learning-facilitated environmental acoustic monitoring in the Capital Region of New York State
Ecological Informatics ( IF 5.8 ) Pub Date : 2021-02-02 , DOI: 10.1016/j.ecoinf.2021.101242
M.M. Morgan , J. Braasch

The effect of anthropogenic activity on animal communication is of increasing ecological concern. Passive acoustic recording offers a robust, minimally disruptive, long-term approach to monitoring species interactions, particularly because many indicator species of environmental health factors such as biodiversity, habitat quality, and pollution produce distinct vocalizations. Machine learning algorithms have been used in recent decades to automatically analyze the large quantities of audio data that result. In this study, a microphone array was used to collect continuous audio data at a site in the Capital Region of New York State for twelve months, resulting in over 8000 h of recordings. A 19-class database containing a variety of bio- and anthrophony was used to train a convolutional neural network in order to generate a reliable record of species-specific calling activity for the entire study period. These results were used to calculate an acoustics-based pseudo-species richness and abundance distribution. Additionally, heatmap plots were used to visualize (i) the time of day (x), sound category (y), and predicted number of sonic events for an average 30-day period and (ii) the day of the year (x), time of day (y), and predicted number of sonic events for each sound category. The correlations between these sonic events and various abiotic factors such as number of daylight hours, temperature, and weather activity were also examined.



中文翻译:

纽约州首府地区的长期深度学习促进环境声学监测

人为活动对动物传播的影响日益引起生态关注。无源录音为监测物种之间的相互作用提供了一种鲁棒的,破坏性最小的长期方法,尤其是因为许多环境健康因素的指示物种,例如生物多样性,栖息地质量和污染会产生不同的声音。近几十年来,机器学习算法已用于自动分析产生的大量音频数据。在这项研究中,使用麦克风阵列在纽约州首府地区的站点连续收集了十二个月的音频数据,从而记录了8000多小时。为了在整个研究期间生成特定物种的呼叫活动的可靠记录,使用了包含各种生物和人为因素的19类数据库来训练卷积神经网络。这些结果用于计算基于声学的伪物种的丰富度和丰度分布。此外,热图图还用于可视化(i)每天的时间(x),声音类别(y)和平均30天的声音事件的预测数量,以及(ii)一年中的一天(x) ,一天中的时间(y)以及每种声音类别的声音事件的预计数量。还检查了这些声音事件与各种非生物因素(如日光时数,温度和天气活动)之间的相关性。这些结果用于计算基于声学的伪物种的丰富度和丰度分布。此外,热图图还用于可视化(i)每天的时间(x),声音类别(y)和平均30天的声音事件的预测数量,以及(ii)一年中的一天(x) ,一天中的时间(y)以及每种声音类别的声音事件的预计数量。还检查了这些声音事件与各种非生物因素(如日光时数,温度和天气活动)之间的相关性。这些结果用于计算基于声学的伪物种的丰富度和丰度分布。此外,热图图还用于可视化(i)每天的时间(x),声音类别(y)和平均30天的声音事件的预测数量,以及(ii)一年中的一天(x) ,一天中的时间(y)以及每种声音类别的声音事件的预计数量。还检查了这些声音事件与各种非生物因素(如日光时数,温度和天气活动)之间的相关性。以及每个声音类别的声音事件的预测数量。还检查了这些声音事件与各种非生物因素(如日光时数,温度和天气活动)之间的相关性。以及每个声音类别的声音事件的预测数量。还检查了这些声音事件与各种非生物因素(如日光时数,温度和天气活动)之间的相关性。

更新日期:2021-02-07
down
wechat
bug