当前位置: X-MOL 学术Iran. J. Sci. Technol. Trans. Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of Stacking Arrangement and Reinforcement Ratio on Impact Behavior of Novel Thermoplastic Embedded Hybrid Composites
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering ( IF 1.3 ) Pub Date : 2020-08-02 , DOI: 10.1007/s40997-020-00384-3
Sai Krishna Chitturi , A. A. Shaikh

Light weight and enhanced impact resistance characteristics are the principal drivers to invent advanced materials for structural and armor applications. In this article, the dynamic transient impact response of hybrid composites developed from glass fabric, polycarbonate (PC) sheet with different relative volume fractions and different stacking arrangements is discussed. The dynamic tests are performed for evaluating the impact resistance of novel hybrid composites at an equal level of impact energy (55 J), impact velocity (4.56 m/s) and impactor mass (5.26 kg). Neat composite is prepared and tested for comparison. The hand-lay-up method with compression molding technique is employed for preparing all the laminates. Contribution of the thermoplastic sheet in conventional glass fiber reinforced composites toward improvisation of impact resistance is assessed and reported. Load–energy–deflection–time curves are plotted to understand the transient behavior of the composite plates. The results indicated that thermoplastic phase in the novel composite enhanced impact resistance in terms of load-carrying capability, energy absorption. Further, it reduced the degree of damage extent and damage area. The density reduction of 12.5–22.5% is noted for hybrid laminates on comparison with neat composite. The damage assessment carried using the vision measuring system revealed that the cone formation due to plastic deformation of PC along with fiber fracture and matrix cracking is the main reason for impact resistance enhancement.

中文翻译:

堆叠排列和配筋率对新型热塑性嵌入杂化复合材料冲击性能的影响

轻质和增强的抗冲击特性是为结构和装甲应用发明先进材料的主要驱动力。在本文中,讨论了由具有不同相对体积分数和不同堆叠排列的玻璃织物、聚碳酸酯 (PC) 板制成的混合复合材料的动态瞬态冲击响应。进行动态测试是为了评估新型混合复合材料在相同水平的冲击能量 (55 J)、冲击速度 (4.56 m/s) 和冲击器质量 (5.26 kg) 下的抗冲击性。制备纯复合材料并进行测试以进行比较。所有层压板均采用手糊法和压缩成型技术制备。评估并报告了传统玻璃纤维增​​强复合材料中热塑性片材对提高抗冲击性的贡献。绘制负载-能量-挠度-时间曲线以了解复合板的瞬态行为。结果表明,新型复合材料中的热塑性相在承载能力、能量吸收方面增强了抗冲击性。此外,它减少了损坏程度和损坏面积。与纯复合材料相比,混合层压板的密度降低了 12.5-22.5%。使用视觉测量系统进行的损伤评估表明,由于 PC 的塑性变形以及纤维断裂和基体开裂而形成的锥体是抗冲击性增强的主要原因。绘制负载-能量-挠度-时间曲线以了解复合板的瞬态行为。结果表明,新型复合材料中的热塑性相在承载能力、能量吸收方面增强了抗冲击性。此外,它减少了损坏程度和损坏面积。与纯复合材料相比,混合层压板的密度降低了 12.5-22.5%。使用视觉测量系统进行的损伤评估表明,由于 PC 的塑性变形以及纤维断裂和基体开裂而形成的锥体是抗冲击性增强的主要原因。绘制负载-能量-挠度-时间曲线以了解复合板的瞬态行为。结果表明,新型复合材料中的热塑性相在承载能力、能量吸收方面增强了抗冲击性。此外,它减少了损坏程度和损坏面积。与纯复合材料相比,混合层压板的密度降低了 12.5-22.5%。使用视觉测量系统进行的损伤评估表明,由于 PC 的塑性变形以及纤维断裂和基体开裂而形成的锥体是抗冲击性增强的主要原因。结果表明,新型复合材料中的热塑性相在承载能力、能量吸收方面增强了抗冲击性。此外,它减少了损坏程度和损坏面积。与纯复合材料相比,混合层压板的密度降低了 12.5-22.5%。使用视觉测量系统进行的损伤评估表明,由于 PC 的塑性变形以及纤维断裂和基体开裂而形成的锥体是抗冲击性增强的主要原因。结果表明,新型复合材料中的热塑性相在承载能力、能量吸收方面增强了抗冲击性。此外,它减少了损坏程度和损坏面积。与纯复合材料相比,混合层压板的密度降低了 12.5-22.5%。使用视觉测量系统进行的损伤评估表明,由于 PC 的塑性变形以及纤维断裂和基体开裂而形成的锥体是抗冲击性增强的主要原因。
更新日期:2020-08-02
down
wechat
bug