当前位置: X-MOL 学术J. Nonlinear Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Multiscale Problem for Viscous Heat-Conducting Fluids in Fast Rotation
Journal of Nonlinear Science ( IF 3 ) Pub Date : 2021-02-03 , DOI: 10.1007/s00332-021-09677-6
Daniele Del Santo , Francesco Fanelli , Gabriele Sbaiz , Aneta Wróblewska-Kamińska

In the present paper, we study the combined incompressible and fast rotation limits for the full Navier–Stokes–Fourier system with Coriolis, centrifugal and gravitational forces, in the regime of small Mach, Froude and Rossby numbers and for general ill-prepared initial data. We consider both the isotropic scaling (where all the numbers have the same order of magnitude) and the multiscale case (where some effect is predominant with respect to the others). In the case when the Mach number is of higher order than the Rossby number, we prove that the limit dynamics is described by an incompressible Oberbeck–Boussinesq system, where the velocity field is horizontal (according to the Taylor–Proudman theorem), but vertical effects on the temperature equation are not negligible. Instead, when the Mach and Rossby numbers have the same order of magnitude, and in the absence of the centrifugal force, we show convergence to a quasi-geostrophic equation for a stream function of the limit velocity field, coupled with a transport-diffusion equation for a new unknown, which links the target density and temperature profiles. The proof of the convergence is based on a compensated compactness argument. The key point is to identify some compactness properties hidden in the system of acoustic-Poincaré waves. Compared to previous results, our method enables first of all to treat the whole range of parameters in the multiscale problem, and also to consider a low Froude number regime with the somehow critical choice \(Fr\,=\,\sqrt{Ma}\), where Ma is the Mach number. This allows us to capture some (low) stratification effects in the limit.



中文翻译:

快速旋转中的粘性导热流体的多尺度问题

在本文中,我们研究了完整的Navier–Stokes–Fourier系统的组合不可压缩和快速旋转极限,这些系统具有科里奥利,离心力和重力,在小Mach,Froude和Rossby数的情况下以及对于一般准备不充分的初始数据。我们考虑了各向同性缩放(所有数字具有相同的数量级)和多缩放情况(其中某些影响相对于其他影响占主导)。在马赫数比罗斯比数高的情况下,我们证明了极限动力学是由不可压缩的Oberbeck-Boussinesq系统描述的,其中速度场是水平的(根据Taylor-Proudman定理),而垂直的对温度方程的影响不可忽略。相反,当马赫数和罗斯比数具有相同的数量级时,在没有离心力的情况下,我们显示出对极限速度场的流函数的拟地转方程的收敛性,以及对新的未知数的传输扩散方程的收敛性,该方程将目标密度和温度曲线联系起来。收敛性的证明是基于补偿的紧密度参数。关键是确定隐藏在庞加莱声波系统中的某些紧缩特性。与以前的结果相比,我们的方法首先使得可以处理多尺度问题中的整个参数范围,还可以考虑采用某种关键选择的低弗洛德数形式 再加上一个新的未知数的传输扩散方程,该方程将目标密度和温度曲线联系起来。收敛性的证明是基于补偿的紧密度参数。关键是确定隐藏在庞加莱声波系统中的某些紧缩特性。与以前的结果相比,我们的方法首先使得可以处理多尺度问题中的整个参数范围,还可以考虑采用某种关键选择的低弗洛德数形式 再加上一个新的未知数的传输扩散方程,该方程将目标密度和温度曲线联系起来。收敛性的证明是基于补偿的紧密度参数。关键是确定隐藏在庞加莱声波系统中的某些紧缩特性。与以前的结果相比,我们的方法首先使能够处理多尺度问题中的整个参数范围,并且还可以考虑采用某种关键选择的低弗洛德数形式\(Fr \,= \,\ sqrt {Ma} \),其中Ma是马赫数。这使我们能够捕获极限中的一些(低)分层效果。

更新日期:2021-02-03
down
wechat
bug