当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrated design and control of reactive distillation processes using the driving force approach
AIChE Journal ( IF 3.5 ) Pub Date : 2021-02-01 , DOI: 10.1002/aic.17227
Ashfaq Iftakher 1 , Seyed Soheil Mansouri 2 , Ahaduzzaman Nahid 1 , Anjan K. Tula 3 , M. A. A. Shoukat Choudhury 1 , Jay Hyung Lee 4 , Rafiqul Gani 4, 5
Affiliation  

Superior controllability of reactive distillation (RD) systems, designed at the maximum driving force (design-control solution) is demonstrated in this article. Binary or multielement single or double feed RD systems are considered. Reactive phase equilibrium data, needed for driving force analysis and design of the RD system, is generated through an in-house property prediction tool. Rigorous steady-state simulation is carried out in ASPEN plus in order to verify that the predefined design targets and dynamics are met. A multiobjective performance function is employed to evaluate the performance of the RD system in terms of energy consumption, sustainability metrics (total CO2 footprint), and control performance. Controllability of the designed system is evaluated using indices like the relative gain array (RGA) and Niederlinski index (NI), to evaluate the degree of loop interaction, as well as through dynamic simulations using proportional-integral (PI) controllers and model predictive controllers (MPC). The design-control of the RD systems corresponding to other alternative designs that do not take advantage of the maximum driving force is also investigated. The analysis shows that the RD designs at the maximum driving force exhibit enhanced controllability and lower carbon footprint than the alternative RD designs.

中文翻译:

使用驱动力方法的反应蒸馏过程的集成设计和控制

本文展示了以最大驱动力(设计-控制解决方案)设计的反应性蒸馏(RD)系统的卓越可控性。考虑使用二元或多元素的单进料或双进料RD系统。驱动力分析和RD系统设计所需的反应性相平衡数据是通过内部属性预测工具生成的。为了验证是否满足预定义的设计目标和动力学,在ASPEN plus中进行了严格的稳态仿真。多目标性能函数用于评估RD系统的性能,包括能耗,可持续性指标(总CO 2足迹),并控制性能。使用诸如相对增益阵列(RGA)和Niederlinski指数(N I)之类的指标评估所设计系统的可控制性,以评估回路相互作用的程度,以及使用比例积分(PI)控制器和模型预测进行动态仿真控制器(MPC)。还研究了与其他备选设计相对应的RD系统的设计控制,这些其他备选设计没有利用最大驱动力。分析表明,与其他RD设计相比,RD设计在最大驱动力下显示出增强的可控制性和更低的碳足迹。
更新日期:2021-02-01
down
wechat
bug