当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
New Routes to Functionalize Carbon Black for Polypropylene Nanocomposites
Langmuir ( IF 3.9 ) Pub Date : 2016-07-27 00:00:00 , DOI: 10.1021/acs.langmuir.6b02013
Céline Shepherd 1 , Emina Hadzifejzovic 1 , Fatma Shkal 2 , Kerstin Jurkschat 3 , Jonathan Moghal 3 , Emily M. Parker 1 , Montree Sawangphruk 4 , Daniel R. Slocombe 2 , John S. Foord 1 , Mark G. Moloney 1
Affiliation  

Methods for chemical surface functionalization for carbon black (CB) nanoparticles were studied to produce (CB)/polypropylene (PP) nanocomposites with superior electrical and thermal properties. Nanoparticle dispersion is known to directly control the extent to which nanocomposites maximize the unique attributes of their nanoscale fillers. As a result, tailored nanoparticle surface chemistry is a widely utilized method to enhance the interfacial interactions between nanoparticles and polymer matrices, assisting improved filler dispersion. In this work, a rapid chemical functionalization approach using a number of diarylcarbene derivatives, followed by the azo-coupling of substituted diazonium salts, for the covalent introduction of selected functional groups to the CB surface, is reported. Characterization of the modified CB by XPS, TGA, CHN, and ATR-IR collectively confirmed surface functionalization, estimating surface grafting densities of the order of 1013 and 1014 molecules/cm2. Nanocomposites, synthesized by solvent mixing PP with pristine and modified CB, demonstrated macroscopic property changes as a result of the nanoparticle surface functionalization. Pronounced improvements were observed for PP nanocomposites prepared with a dodecyl-terminated diaryl functionalized CB, in which TEM analysis established improved nanofiller dispersion owing to the enhanced CB-PP interfacial interactions in the nanocomposite. Observed dielectric relaxation responses at 20 wt % loading and a reduced percolation threshold realized conductivities of 1.19 × 10–4 S cm–1 at 10 wt %, compared to 2.62 × 10–15 S cm–1 for pristine CB/PP nanocomposites at the same filler loading. In addition, thermal properties signify an increase in the number of nucleation sites by the raised degree of crystallinity as well as increased melting and crystallization temperatures.

中文翻译:

功能化炭黑的聚丙烯纳米复合材料的新途径

研究了用于炭黑(CB)纳米粒子化学表面功能化的方法,以生产具有优异电性能和热性能的(CB)/聚丙烯(PP)纳米复合材料。已知纳米颗粒分散体直接控制纳米复合材料最大化其纳米级填料的独特属性的程度。结果,定制的纳米颗粒表面化学是一种广泛使用的方法,可以增强纳米颗粒和聚合物基质之间的界面相互作用,从而有助于改善填料的分散性。在这项工作中,报道了一种快速的化学官能化方法,该方法使用多种二芳基卡宾衍生物,然后将取代的重氮盐进行偶氮偶联,以将选定的官能团共价引入CB表面。通过XPS,TGA,CHN,13和10 14个分子/ cm 2。通过将PP与原始材料和改性CB混合溶剂而合成的纳米复合材料,由于纳米粒子表面功能化而表现出宏观性质的变化。观察到用十二烷基封端的二芳基官能化CB制备的PP纳米复合材料的显着改善,其中TEM分析建立了改善的纳米填料分散性,这是由于纳米复合材料中CB-PP界面相互作用的增强。在20 wt%的负载下观察到的介电弛豫响应和降低的渗漏阈值在10 wt%时实现了1.19×10 –4 S cm –1的电导率,而在电导率下为2.62×10 –15 S cm –1相同填充量的原始CB / PP纳米复合材料。另外,热性能表示通过提高结晶度以及提高熔融和结晶温度来增加成核位点的数量。
更新日期:2016-07-27
down
wechat
bug