当前位置: X-MOL 学术Fluid Dyn. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of rotating control cylinder location on vortex shedding behind a main cylinder
Fluid Dynamics Research ( IF 1.3 ) Pub Date : 2021-01-30 , DOI: 10.1088/1873-7005/abd1d1
R Deepakkumar 1 , S Jayavel 2
Affiliation  

The dynamic behavior of flow over a circular main cylinder (MC) in presence of single small rotating control cylinder (CC) has been studied numerically at Reynolds number, Re = 100 and 200. The CC location (r cc = 0.6D–1D), rotational direction (clockwise and counterclockwise) and rotational rate (α = 0–2) of CC are taken as the study parameters. The flow field variables are computed using Ansys Fluent 15.0, the vortex shedding characteristics such as Strouhal number (St), drag (C D ) and lift (C L ) coefficients are analyzed. It is identified that the fluid shearing between MC and CC significantly controls the vortex formation behind the MC and subsequent vortex shedding. Unlike existing study, which reports the vortex shedding suppression only for the very closer location of CC, the present work identified new locations of CC for vortex shedding suppression. At Re = 100, suppression is identified at three different locations of CC (r cc = 0.7D, 0.9D and 1D) with lower α (α = 0.5, 1) due to a favorable pressure gradient (FPG) over MC. But with increasing Re, CC at higher r cc and lower α does not generate FPG. At Re = 200, shedding suppression is observed only at higher α (α = 2) and closer location of CC ($\theta = 75^\circ,r_{cc} = 0.7D$), which is identified as an optimum location based on vortex shedding suppression on the MC with reduced drag (65.45%, 75.8%) respectively for Re = 100 and 200.



中文翻译:

旋转控制气缸位置对主气缸后部涡流脱落的影响

在单个雷诺数为Re = 100和200的情况下,已经对存在单个小型旋转控制缸(CC)的圆形主缸(MC)上的流动动力学行为进行了数值研究。CC位置(r cc = 0.6 D –1 D),将CC的旋转方向(顺时针和逆时针)和旋转速率(α = 0–2)作为研究参数。流场变量是使用Ansys Fluent 15.0计算的,涡旋脱落特性如Strouhal数(St),阻力(C D)和升力(C L )系数进行分析。可以确定的是,MC和CC之间的流体剪切显着地控制了MC后面的旋涡形成以及随后的旋涡脱落。与现有的研究报告仅在CC的较近位置报告涡旋脱落抑制不同,本研究确定了CC用于涡旋脱落抑制的新位置。在Re = 100时, 由于在MC上存在有利的压力梯度(FPG),因此在CC的三个不同位置(r cc = 0.7 D,0.9 D和1 D)具有较低的αα = 0.5、1)被抑制。但是随着Re的增加,CC在更高的r cc和更低的α 不生成FPG。在Re = 200时,仅在较高的αα  = 2)和较近的CC($ \ theta = 75 ^ \ circ,r_ {cc} = 0.7D $)处观察到脱落抑制,这是基于MC上涡流脱落抑制且阻力减小(65.45%,75.8%)的最佳位置。 )分别代表Re = 100和200。

更新日期:2021-01-30
down
wechat
bug