当前位置: X-MOL 学术AIAA J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hypersonic Oscillating Shock-Wave/Boundary-Layer Interaction on a Flat Plate
AIAA Journal ( IF 2.5 ) Pub Date : 2021-02-01 , DOI: 10.2514/1.j059590
Gaetano M. D. Currao, Liam P. McQuellin, Andrew J. Neely, Sudhir L. Gai, Sean O’Byrne, Fabian Zander, David R. Buttsworth, Jack J. McNamara, Ingo Jahn

This work discusses the design, measurement, and simulation of an oscillating shock-wave/boundary-layer interaction on a flat plate at Mach 5.8 and Re=7×106 m1. The shock generator is free to pitch and oscillates with a frequency of 42 Hz, resulting in a shock that varies in intensity and impingement point, with a maximum flow-deflection angle of approximately 10 deg. Transition appears to take place downstream of the separated region for both static (with a fixed flow-deflection angle) and dynamic experiments; however, heat-flux values are typically between laminar and turbulent solutions, thus suggesting that a complete transition to a fully turbulent boundary layer is delayed because of the favorable pressure gradient induced by the impinging expansion wave originating from trailing edge of the shock generator. Peak pressure is typically overpredicted by laminar simulations for large deflection angles. Starting from the reattachment point, heat-flux measurements show that the boundary layer gradually deviates from the laminar solution towards a fully turbulent boundary layer. Vortices are observed in the reattachment region, and their distribution is solely a function of the boundary-layer properties at the separation point. Transient effects induced by the shock motion result in a maximum bubble length variation of 30%. For the static cases, the separated region amplified disturbances with a frequency of approximately 200 Hz. In the dynamic experiment, harmonics induced by the pseudosinusoidal motion of the shock generator were measured everywhere on the plate.



中文翻译:

平板上的高超声速振荡激波/边界层相互作用

这项工作讨论了在5.8马赫和5.8马赫的平板上振荡的冲击波/边界层相互作用的设计,测量和模拟。 [RË=7×106 -1个。冲击发生器自由俯仰并以42 Hz的频率振荡,从而导致冲击强度和冲击点发生变化,最大偏转角约为10度。对于静态(具有固​​定的流偏角)和动态实验,过渡似乎都发生在分离区域的下游。然而,热通量值通常在层流和湍流解之间,因此表明由于从激波发生器后缘产生的冲击膨胀波引起的有利压力梯度,延迟了向完全湍流边界层的完全过渡。对于较大的偏转角,层流模拟通常会过度预测峰值压力。从重新安装点开始,热通量测量表明,边界层逐渐从层流溶液向完全湍流的边界层偏离。在重新连接区域中观察到涡旋,并且涡旋的分布仅是分离点处边界层性质的函数。冲击运动引起的瞬态效应导致最大气泡长度变化为30%。对于静态情况,分离区域会以大约200 Hz的频率放大干扰。在动态实验中,在板上的每个位置都测量了由冲击发生器的正弦运动引起的谐波。它们的分布仅是分离点处边界层特性的函数。冲击运动引起的瞬态效应导致最大气泡长度变化为30%。对于静态情况,分离区域会以大约200 Hz的频率放大干扰。在动态实验中,在板上的每个位置都测量了由冲击发生器的正弦运动引起的谐波。它们的分布仅是分离点处边界层特性的函数。冲击运动引起的瞬态效应导致最大气泡长度变化为30%。对于静态情况,分离区域会以大约200 Hz的频率放大干扰。在动态实验中,在板上的每个位置都测量了由冲击发生器的正弦运动引起的谐波。

更新日期:2021-02-01
down
wechat
bug