当前位置: X-MOL 学术Nucl. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Empirical Analysis of the Multi-Mission Radioisotope Thermoelectric Generator Qualification Unit Operated at a Low Thermal Inventory with Potential for Improved End-of-Life Power
Nuclear Technology ( IF 1.5 ) Pub Date : 2021-01-28 , DOI: 10.1080/00295450.2020.1831874
Christofer E. Whiting 1
Affiliation  

Abstract

Performance predictions for the first multi-mission radioisotope thermoelectric generator (MMRTG) flight unit and engineering unit were recently reported. Both units were produced and operated/tested within specifications [i.e., nominal thermal inventory = 2000 W(thermal)]. In an attempt to study the effect of a deep space cruise on an MMRTG that has been operational for 6.25 years (2.25 years storage + 4 years cruise), the qualification unit (QU) was placed on life test with a below-specification thermal inventory of 1904 W(thermal). Analysis indicates that loading an MMRTG with a lower thermal inventory may result in less power at the beginning-of-life but more power at the end-of-design-life (EODL). The lower thermal inventory in the QU produces a lower operating temperature, which appears to cause a significant reduction in the degradation rate of the thermoelectric couples. Preliminary calculations indicate that a thermal inventory of 1904 W(thermal) could result in a 9 W(electric) power boost at EODL [i.e., 84 W(electric)], which is a 12% improvement over the first MMRTG flight unit and engineering unit predictions. Preliminary degradation analysis suggests that a 1904 W(thermal) unit will begin to produce more power than a 2027 W(thermal) unit approximately 4 years after fueling. This suggests that missions with a primary power requirement more than 4 years after fueling would benefit from a lower thermal inventory. In addition, using a lower thermal inventory has significant benefits for 238Pu stockpile management and may allow for additional MMRTGs to be fueled from our current reserves. Conclusions and hypotheses presented here should be considered preliminary because the QU data set is very small and there are some uncertainties regarding how early-life QU data will translate into later-life performance. More QU testing at a thermal inventory of 1904 W(thermal) is needed to prove that the preliminary conclusions presented here are valid.



中文翻译:

在低热库存下运行的多用途放射性同位素热电发电机合格单位的经验分析,具有改善报废电力的潜力

摘要

最近报道了第一个多任务放射性同位素热电发电机 (MMRTG) 飞行单元和工程单元的性能预测。两个单元的生产和操作/测试均符合规范[即,标称热库存 = 2000 W(热)]。为了研究深空巡航对已运行 6.25 年(2.25 年存储 + 4 年巡航)的 MMRTG 的影响,资格单元 (QU) 进行了寿命测试,其热库存低于规范1904 W(热)。分析表明,加载具有较低热库存的 MMRTG 可能会导致寿命开始时的功率降低,但设计寿命结束 (EODL) 时的功率增加。QU 中较低的热库存产生较低的工作温度,这似乎导致热电偶退化率的显着降低。初步计算表明,1904 W(热)的热库存可能会导致 EODL 时的 9 W(电)功率提升 [即 84 W(电)],这比第一个 MMRTG 飞行单元和工程提高了 12%单位预测。初步退化分析表明,在加油大约 4 年后,1904 W(热)装置将开始产生比 2027 W(热)装置更多的功率。这表明在加油后超过 4 年的主要电力需求的任务将受益于较低的热库存。此外,使用较低的热库存对 初步计算表明,1904 W(热)的热库存可能会导致 EODL 时的 9 W(电)功率提升 [即 84 W(电)],这比第一个 MMRTG 飞行单元和工程提高了 12%单位预测。初步退化分析表明,在加油大约 4 年后,1904 W(热)装置将开始产生比 2027 W(热)装置更多的功率。这表明在加油后超过 4 年的主要电力需求的任务将受益于较低的热库存。此外,使用较低的热库存对 初步计算表明,1904 W(热)的热库存可能会导致 EODL 时的 9 W(电)功率提升 [即 84 W(电)],这比第一个 MMRTG 飞行单元和工程提高了 12%单位预测。初步退化分析表明,在加油大约 4 年后,1904 W(热)装置将开始产生比 2027 W(热)装置更多的功率。这表明在加油后超过 4 年的主要电力需求的任务将受益于较低的热库存。此外,使用较低的热库存对 初步退化分析表明,在加油大约 4 年后,1904 W(热)装置将开始产生比 2027 W(热)装置更多的功率。这表明在加油后超过 4 年的主要电力需求的任务将受益于较低的热库存。此外,使用较低的热库存对 初步退化分析表明,在加油大约 4 年后,1904 W(热)装置将开始产生比 2027 W(热)装置更多的功率。这表明在加油后超过 4 年的主要电力需求的任务将受益于较低的热库存。此外,使用较低的热库存对238 Pu 库存管理,并可能允许从我们当前的储备中为额外的 MMRTG 提供燃料。此处提出的结论和假设应被视为初步的,因为 QU 数据集非常小,并且关于早期 QU 数据如何转化为晚年表现存在一些不确定性。需要在 1904 W(热)的热库存下进行更多 QU 测试,以证明此处提供的初步结论是有效的。

更新日期:2021-01-28
down
wechat
bug