当前位置: X-MOL 学术Gas Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simulating gas hydrate formation in the southern hydrate ridge, Cascadia Margin
Gas Science and Engineering Pub Date : 2021-01-29 , DOI: 10.1016/j.jngse.2021.103845
Sulav Dhakal , Ipsita Gupta

The Cascadia Margin in the Pacific Ocean is a widely investigated region for oceanic gas hydrates. In this study, numerical simulation models are developed to simulate the flow of methane gas up fault zones in the Southern Hydrate Ridge of the Cascadia Margin. Three different hydrate formation scenarios, common to hydrate formation mechanisms in similar settings, are simulated. The tested scenarios are based on both field observations and previous numerical simulation assessments in similar subsea hydrate reserves. Results predict that gas hydrates in this region can be formed from gas migration up faults from deeper sources. The hydrate distribution follows the slope of the southern hydrate ridge but can be disjointed at places due to the presence of low salinity fluids, which results in higher hydrate saturations. The dominant mechanisms of gas migration into the region are advection and buoyancy driven. Capillary pressure forces, density differences, and hydraulic pressure differentials define the migration pathways along with high permeability pathways through faults. The timing of gas hydrate formation ranges between 2000 years and 1650 years for the modeling scenarios tested with the likelihood that the formation time is closer to 1650 years due to the likely presence of multiple faults acting as migration pathways for the gas. For the modeling scenarios tested, the gas hydrate mass generated ranges from 6.46 × 105 kg to 6.837 × 105 kg for the unit vertical cross-section used in the simulations. Predicted results of hydrate saturation are calibrated to field measured well log data for validation and verification.



中文翻译:

模拟南部水合物岭Cascadia Margin中的天然气水合物形成

太平洋的卡斯卡迪亚边际是一个广泛研究海洋天然气水合物的地区。在这项研究中,开发了数值模拟模型来模拟卡斯卡迪亚边缘南部水合物岭中甲烷气体向上沿断层带的流动。模拟了三种在相似环境下水合物形成机理共有的不同水合物形成场景。所测试的情景是基于现场观察和类似海底水合物储量先前的数值模拟评估。结果表明,该区域的天然气水合物可能是由于天然气从较深层的断层向上迁移而形成的。水合物的分布遵循南部水合物岭的坡度,但由于存在低盐度流体,因此在某些地方可能会分离,从而导致较高的水合物饱和度。气体迁移到该区域的主要机制是平流和浮力驱动。毛细管压力,密度差和液压差定义了通过断层的运移路径以及高渗透率路径。在所测试的模拟情景中,天然气水合物的形成时间在2000年至1650年之间,由于可能存在多个断层作为天然气的迁移途径,因此形成时间更接近1650年。对于测试的建模方案,生成的天然气水合物质量范围为6.46×10 在所测试的模拟情景中,天然气水合物的形成时间在2000年至1650年之间,由于可能存在多个断层作为天然气的迁移途径,因此形成时间更接近1650年。对于测试的建模方案,生成的天然气水合物质量范围为6.46×10 在所测试的模拟情景中,天然气水合物的形成时间在2000年至1650年之间,由于可能存在多个断层作为天然气的迁移途径,因此形成时间更接近1650年。对于测试的建模方案,生成的天然气水合物质量范围为6.46×10 模拟中使用的单位垂直横截面为5  kg至6.837×10 5 kg。将水合物饱和度的预测结果与现场测得的测井数据进行校准,以进行验证和验证。

更新日期:2021-02-05
down
wechat
bug